SEMISYNTHETIC BICYCLOMYCIN DERIVATIVES: PREPARATION AND ANTIBACTERIAL EVALUATION

B. W. Müller, O. Zak, W. Kump, W. Tosch and O. Wacker
Research Department, Pharmaceuticals Division, CIBA-GEIGY Ltd., Basle, Switzerland
(Received for publication April 16, 1979)

Abstract

A number of semisynthetic bicyclomycin derivatives have been prepared by modifications at various sites of the molecule. The preparation, characterization and antimicrobial evaluation of the new compounds is described. In contrast to bicyclomycin itself, the new derivatives 48 and 58 are also active against Proteus species. Otherwise, the antibacterial potency of the bicyclomycin molecule was found to be very sensitive to structural changes.

The isolation of bicyclomycin ${ }^{1)}$ from Streptomyces sapporonensis ATCC 21532 was reported in 1972 by the research laboratories of Fujisawa Pharmaceutical Co. Ltd. The structural elucidation $^{2,3)}$, antibacterial properties ${ }^{4)}$ and mechanism of action ${ }^{5)}$ have been the subjects of further communications from this group*. The antimicrobial spectrum of bicyclomycin, its low toxicity and its novel structure prompted us to initiate a project for the chemical modification of this antibiotic. The present paper describes the preparation, chemical characterization and the microbiological properties of a number of new semisynthetic derivatives obtained in our laboratories.

Chemical Modifications

A considerable number of esters of the primary hydroxyl group have been described by Kamiya et $a l^{2,6)}$ In extension of this work, we have now prepared the carbonates 2,3 and $\mathbf{4}$ by reaction of 1 with the corresponding chloroformates. One noteworthy feature in this series was the formation of the cyclic carbonate 4, obtained with 2,2,2-trichloroethyl-chloroformate, and its rearrangement to the isomeric $1^{\prime}, 2^{\prime}$-carbonate 5 in methanolic solution at ambient temperature. The carbamate 6 was prepared easily from 1 and ethyl isocyanate.

The reaction of bicyclomycin with dihydropyrane/p-toluenesulfonic acid can be conducted to give either the monoether $\mathbf{8}$ or the diether $\mathbf{1 2}^{7 \text {) }}$. Acylation of $\mathbf{8}$ with benzoyl chloride - pyridine, separation of 9 from the dibenzoate $\mathbf{1 0}$, and removal of the protecting group led to the $\mathrm{C}-\mathbf{1}^{\prime}$-benzoate ester 11. In a similar way, 6-O-acetyl-bicyclomycin 14 was obtained from the di-THP-ether $\mathbf{1 2}$ via the intermediate 13**. These sequences illustrate the application of THP-protected intermediates for selective transformations at $\mathrm{C}-1^{\prime}$ or $\mathrm{C}-6$.

With mesyl chloride - pyridine, bicyclomycin 1 was converted to the mesylate 15 , which on treatment with triethylamine furnished the epoxide $\mathbf{1 6}$ in 70% yield***. Both $\mathbf{1 5}$ and $\mathbf{1 6}$ are potential intermediates for derivatives carrying a nitrogen- or sulfur functional group at C-3'. Attempts to prepare 3^{\prime}-amino derivatives by reacting either $\mathbf{1 5}$ or $\mathbf{1 6}$ with ammonia or isopropylamine failed, and instead the tricyclic compound $\mathbf{1 7}$ was formed in low yield together with other compounds of as yet

[^0]Fig. 1.

No	X	Y	Z	W
$\mathbf{1}$	-OH	-OH	-OH	-OH
$\mathbf{2}$	$-\mathrm{OCOOC}_{2} \mathrm{H}_{5}$	-OH	-OH	-OH
$\mathbf{3}$	$-\mathrm{OCOOC}_{2} \mathrm{H}_{5}$	-OH	$-\mathrm{OCOOC} \mathrm{O}_{5}$	-OH
$\mathbf{4}$	-OCOO		-OH	-OH
$\mathbf{5}$	-OH	$-\mathrm{O}-\mathrm{CO}-\mathrm{O}-$	-OH	
$\mathbf{6}$	$-\mathrm{OCONHC}_{2} \mathrm{H}_{5}$	-OH	-OH	-OH
$\mathbf{7}$	$-\mathrm{OCOCH}_{3}$	-OH	$-\mathrm{OCOCH}_{3}$	-OCOCH
$\mathbf{8}$	-OTHP	-OH	-OH	-OH
$\mathbf{9}$	-OTHP	-OH	$-\mathrm{OCOC}_{6} \mathrm{H}_{5}$	-OH
$\mathbf{1 0}$	-OTHP	-OH	$-\mathrm{OCOC}_{6} \mathrm{O}_{5}$	$-\mathrm{OCOC} \mathrm{O}_{5}$
$\mathbf{1 1}$	-OH	-OH	$-\mathrm{OCOC}_{6} \mathrm{O}_{5}$	-OH
$\mathbf{1 2}$	-OTHP	-OH	-OTHP	-OH
$\mathbf{1 3}$	-OTHP	-OH	-OTHP	-OCOCH
$\mathbf{1 4}$	-OH	-OH	-OH	-OCOCH
$\mathbf{1 5}$	$-\mathrm{OSO}_{2} \mathrm{CH}_{3}$	-OH	-OH	-OH

Fig. 2.

17

18: $R=S H$
19: $R=\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
unknown structure. Alternatively $\mathbf{1 7}$ was isolated as the main product on reaction of the epoxide 16 with NaI in aqueous solution. Opening of the oxirane ring of $\mathbf{1 6}$ with S-nucleophiles $\left(\mathrm{H}_{2} \mathrm{~S}\right.$ and $\left.\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ did provide the desired 3'-mercapto analog of bicyclomycin (18) and thioether 19 respectively (Fig. 2).

As further variations of the 2-methyl-1,2,3-trihydroxy-propyl chain, its stepwise degradation and replacement by synthetic chains were envisaged. The periodic acid oxidation of bicyclomycin leading to the aldehyde 25 and the hemiacetal 26 has been described earlier ${ }^{2)}$. We have now found that oxidation of $\mathbf{1}$ with only 1.0 eq. of periodic acid affords the methyl ketone 20. Reduction of $\mathbf{2 0}$ with NaBH_{4} led to the triol 21, which was obtained as an epimeric mixture. Further transformations of 20 include the preparation of the oxime 22 and Wittig reactions leading to the α, β-unsaturated esters 23 and 24. Attempts to convert 24 to the corresponding free acid by

$$
\begin{aligned}
& 21 \mathrm{x}=\stackrel{-}{\mathrm{C}} \stackrel{\mathrm{CH}}{\mathrm{C}} \mathrm{H}-\mathrm{OH} \\
& 22 \times \stackrel{\mathrm{CH}_{3}}{\substack{\mathrm{H}_{3} \\
\mathrm{C}} \mathrm{~N}-\mathrm{OH}} \\
& 23 \times=\stackrel{C_{\mid}^{C \mathrm{C}_{3}}}{\mathrm{C}=\mathrm{CH}-\mathrm{COOC}_{2} \mathrm{H}_{5}} \\
& \mathrm{CH}_{3}
\end{aligned}
$$

32
Fig. 3.

$25 R=-\mathrm{CH}=\mathrm{O}$
$26 \mathrm{R}=\underset{\substack{\mathrm{O} \\ \underset{\mathrm{OCH}}{3}}}{-\mathrm{CH}-\mathrm{OH}}$
$27 \mathrm{R}=-\mathrm{CH}_{2} \mathrm{OH}$
$28 \mathrm{R}=-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{COCH}_{3}\right)_{2}$
$29 R=-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$
$30 R=-\mathrm{CH}=\mathrm{CHCOOCH} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{NO}_{2}$.
$31 \mathrm{R}=-\mathrm{CH}=\mathrm{CHCOCH}_{3}$
hydrogenolytic ester cleavage were unsuccessful.
The aldehyde 25 was easily reduced with NaBH_{4} to the primary alcohol 27 . The highly reactive carbonyl group of $\mathbf{2 5}$ allowed condensations with acetylacetone $(\rightarrow \mathbf{2 8})$ and with diethyl malonate $(\rightarrow \mathbf{2 9})$ in the presence of piperidine at room temperature. Attempted aldol-type condensation of $\mathbf{2 5}$ with acetone afforded the N, O-acetonide 32 in low yield. The olefinic compounds 30 and 31 were obtained from 25 and the corresponding phosphoranes.

Our further efforts were concentrated on the derivatization of the bicyclic nucleus. In this part of the molecule the nitrogen atoms of the dioxopiperazine ring and the exocyclic double bond were considered ideal targets for chemical transformations.

For N -alkylation studies, the acetonide $\mathbf{3 3}^{7}$) was chosen as a suitable starting material. Methylation of 33 with $\mathrm{CH}_{3} \mathrm{I} / \mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF produced 34 in moderate yield together with traces of 35 . For the preparation of 35 realkylation of the monomethyl derivative 34 was preferred, since prolonged methylation of 33 led to the formation of rearranged compounds. From this experiment a further compound could be isolated, which was characterized as the $\mathrm{N}, \mathrm{N}, \mathrm{O}-$ trimethylderivative 36. Deprotection of the acetonides with aqueous sulfuric acid in methanol solution then gave N -monomethyl- (37), N, N-dimethyl- (38) and $\mathrm{N}, \mathrm{N}, \mathrm{O}$-trimethyl-bicyclomycin (39). The N -methyl group in 37 was located at N-9, on the basis of ${ }^{13} \mathrm{C}$-NMR spectra, which revealed a downfield shift for the signal attributed to the adjacent C-6 (84.1 ppm , compared to 81.4 ppm in 1). Simultaneously only a minor shift (87.7 as against 87.3 ppm) was observed for the signal of C-1.

Structural changes at the 5 -exo-methylene group included the preparation of the dibromo derivative 40^{*} with pyridinium hydrobromide perbromide and of several oxygenated compounds. Oxidation of bicyclomycin with aqueous hydrogen peroxide in the presence of osmium tetroxide in catalytic amounts afforded the hexol 41, together with a compound resulting from oxidative degradation. With

Fig. 4.

No.	$-\mathrm{R}_{1}$	$-\mathrm{R}_{2}$	$-\mathrm{R}_{3}$	X / Y
$\mathbf{3 3}$	-H	-H	-H	$>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
$\mathbf{3 4}$	$-\mathrm{CH}_{3}$	-H	-H	$\prime \prime$
$\mathbf{3 5}$	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	-H	$\prime \prime$
$\mathbf{3 6}$	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	$\prime \prime$
$\mathbf{3 7}$	$-\mathrm{CH}_{3}$	-H	-H	$-\mathrm{H} /-\mathrm{H}$
$\mathbf{3 8}$	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	-H	$\prime \prime$
39	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	$\prime \prime$

Fig. 5.

46

[^1]Fig. 6.

47

sodium tungstate - hydrogen peroxide in acetic acid* both the acetate $\mathbf{4 2}(30 \%)$ and the epoxide 43 (49%) were obtained after chromatographic separation. For the epoxidation of bicyclomycin trifluoroperacetic acid was found to be the reagent of choice and gave 43 in 80% yield. According to their spectral data $\mathbf{4 1} \sim \mathbf{4 3}$ were formed stereoselectively. Opening of the oxirane ring with sulfanilide was preferentially achieved in the $2^{\prime}, 3^{\prime}$-acetonide protected series ($\mathbf{4 3 a} \rightarrow \mathbf{4 4 a} \rightarrow \mathbf{4 4}$). Cyclo-addition of carbethoxy nitrile oxide ${ }^{8)}$ to the exocyclic double bond produced the spiro-oxazoline 45 as a single isomer. Reduction with zinc powder - acetic acid followed by mild acetylation afforded the tetracyclic lactone 46 as a mixture of two diastereomers.

Besides the addition products discussed above, we were also interested in compounds containing carbon substituents at the exocyclic double bond and in the replacement of the exo methylene group by imino functions. Both classes of compounds are accessible via the norketone 47. This key intermediate was obtained in 81% yield upon ozonization of bicyclomycin followed by ozonide cleavage with dimethyl sulfide.

The α, β-unsaturated esters $\mathbf{4 8 \sim 5 0}$ and the nitrile $\mathbf{5 2}$ were prepared by Wittig reaction of $\mathbf{4 7}$ with the corresponding triphenylphosphoranes. In addition $\mathbf{5 0}$ was converted to the carboxylic acid $\mathbf{5 1}$ by hydrogenolysis over Pd / C.

Attempts to prepare $\mathbf{5 3}$ and $\mathbf{5 5}$ from $\mathbf{4 7}$ and the triphenylphosphoranes derived from chloroacetone and chloroacetophenone respectively were unsuccessful, presumably owing to the low reactivity of the resonance-stabilized ylides and the limited thermal stability of the ketone $\mathbf{4 7}$. The ketones $\mathbf{5 3}$ and 55 were finally obtained with the corresponding tri- n-butyl phosphonium ylides in dioxane solution.

According to their ${ }^{1} \mathrm{H}$-and ${ }^{13} \mathrm{C}$-NMR spectra, the compounds $48 \sim 55$ were obtained as single isomers. For the methyl ester (48) the configuration at the trisubstituted double bond has been determined on the basis of an Overhauser enhancement. Saturation of the ${ }^{1} \mathrm{H}$-resonance attributed to the C-6 hydroxyl proton increases the NMR-intensity of the olefinic proton by 30%. This enhancement is only compatible with the sterically less crowded (E)-configuration. In addition this assignment is in good agreement with the upfield γ-shift of the ${ }^{13} \mathrm{C}$-resonance attributed to $\mathrm{C}-4$ by 6.1 ppm as compared with bicyclomycin. On the basis of this evidence and of analogous observations concerning 49~55, the double bond is assumed to be of the (E)-configuration in all these compounds.

In the case of 53 further evidence for this assignment was obtained as follows: attempted reduction of the methyl ketone 53 with $\mathrm{NaCNBH}_{3}-\mathrm{CH}_{3} \mathrm{NH}_{2} \cdot \mathrm{HCl}$ led to the isolation of an isomeric com-

[^2]pound which was characterized as the hemiketal derived from the (Z)-ketone 56 . With NaBH_{4} in methanolic solution 53 was reduced to the allylic alcohol 54 , which was obtained as a mixture of two epimers in 52% yield. The 5 -imino derivatives $\mathbf{5 7} \sim \mathbf{5 9}$ were prepared from the ketone $\mathbf{4 7}$ according to standard procedures. The oxime 57 and the phenylhydrazone $\mathbf{5 9}$ were isolated as single compounds according to ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$, whereas the methoxyimino-derivative 58 was obtained as a $4: 1$ mixture of both isomers. The ${ }^{18} \mathrm{C}$-resonance signals attributed to $\mathrm{C}-4$ of $\mathbf{5 8}$ are located at 25.20 ppm (major component) and at 28.73 ppm (minor component). Based on the more pronounced upfield shift the (E)-configuration is assumed for the main component ${ }^{9}$.

Biological Properties

The derivatives $\mathbf{2 \sim 5 9}$ have been screened for their antibacterial activity in vitro and most of them also for their efficacy in protecting mice against systemic infections.

In the in vitro screens, minimum inhibitory concentrations (MIC's in mcg/ml) against 25 strains of various Gram-positive and Gram-negative organisms were determined by the twofold drug-agar dilution method ${ }^{10)}$ on DST agar (Oxoid), with an inoculum of 10^{4} organisms, deposited on the surface of the agar by means of a multiple replicating device ${ }^{11)}$. By the same technique, the MIC's of a few

Table 1. Antibacterial activity in vitro of bicyclomycin and derivatives $\mathbf{2 \sim 4 6}$

Organism	MIC ($\mathrm{mcg} / \mathrm{ml}$) of compound:	
	$\begin{gathered} \mathbf{1} \\ \text { (bicyclomycin) } \end{gathered}$	2~46
Haemophilus influenzae NCTC 4560	3.1	>100
Escherichia coli 205	12.5	>100
E. coli $205 \mathrm{R}_{\text {TEM }}^{\dagger}$	12.5	>100
E. coli 16	25	>100
Salmonella typhimurium 277	25	>100
Enterobacter cloacae P99	50	>100
E. cloacae 1404	50	>100
Staphylococcus aureus 10B, S. aureus 2999, Streptococcus pyogenes Aronson, S. faecalis 1362/3, S. pneumoniae III 84, Neisseria gonorrhoeae 1317/4, N. meningitidis 1316, Klebsiella pneumoniae 327, Serratia marcescens 344, Proteus mirabilis 564, P. mirabilis 1219, P. rettgeri 856, P. morganii 2359, P. morganii 1518, Pseudomonas aeruginosa ATCC 12055, P. aeruginosa 313, Clostridium perfringens 194, Candida albicans ATCC 11651	> 100	>100

Table 2. Efficacy of bicyclomycin and derivatives 2~46 against systemic infections in mice.

Organism	Route of administration	$E D_{50}(\mathrm{mg} / \mathrm{kg})$ of compound:							
		$\frac{1}{\text { (bicyclo- }}$ mycin)	2	8	9	11	14	40	43
Escherichia coli 205*	s.c.	12	30	30	> 300	60	170	65	200
	p.o.	110	65	150	160	100	> 300	100	>300
Enterobacter cloacae P99**	s.c.	26	50	120	>300	70	n.d.	>300	n.d.

n.d.: not determined
infective dose: ${ }^{*} 4 \times 10^{6},{ }^{* *} 1 \times 10^{8}$ c.f.u. per mouse
All derivatives in series $2 \sim 46$ not listed in Table 2 were ineffective against infection due to E. coli 205 (ED $_{50}$
$>300 \mathrm{mg} / \mathrm{kg}$); they were not examined in infection with E. cloacae P99.
selected bicyclomycin derivatives for 113 clinical isolates of Proteus sp. received from various clinics in Europe and the U.S.A. were determined.

The protective efficacy of the derivatives was screened in mice with systemic infection due to Escherichia coli strain 205. Female SPF MF2 mice were infected intraperitoneally with 10 times the LD_{100} of the test organism, suspended in BHI broth with 2% mucin. Groups of 10 were then treated twice subcutaneously, immediately after infection and 3 hours later. ED_{50} values ($\mathrm{mg} / \mathrm{kg}$) were calculated by probit analysis from the number of survivors 5 days after the infection ${ }^{12}$.

By the same technique the efficacy of some selected derivatives was also determined against systemic infections due to further bacterial genera in mice. The infecting strains and the inocula are indicated in Table 5.

The derivatives $2 \sim 46$ were shown to be inactive in vitro (Table 1). Against systemic infections in mice due to E. coli 205 these compounds were either less active than the parent compound or even completely inactive (Table 2).

Among the 5 -alkylene and 5-imino derivatives (compounds $48 \sim 59$), a few were found to possess a broader spectrum of activity in vitro than bicyclomycin (Table 3). In contrast to the parent compound, derivatives $\mathbf{4 8}, \mathbf{4 9}$ and $\mathbf{5 8}$ also inhibited Proteus sp., compound $\mathbf{4 8}$ being the most active in this respect.

Table 3. Antibacterial activity in vitro of 5-alkylene and 5-imino derivatives of bicyclomycin

Organism	MIC (mcg/ml) of compound:			
	$\mathbf{1}$ (Bicyclo- mycin)	$\mathbf{4 8}$	49	58
Haemophilus influenzae NCTC 4560	3.1	>100	>100	>100
Escherichia coli 205	12.5	25	25	25
E. coli 205 R ${ }_{\text {TEM }}^{+}$	12.5	25	50	50
E. coli 16	25	50	100	100
Salmonella typhimurium 277	25	50	100	50
Enterobacter cloacae P99	50	>100	>100	>100
E. cloacae 1404	50	100	>100	100
Klebsiella pneumoniae 327	25	100	>100	100
Proteus mirabilis 564	>100	100	>100	100
P. mirabilis 1219	>100	50	100	100
P. rettgeri 856	>100	25	25	>100
P. morganii 2359	>100	100	>100	>100
P. morganii 1518	>100	100	>100	>100
Pseudomonas aeruginosa ATCC 12055	>100	>100	>100	>100
Serratia marcescens 344	>100	100	>100	>100

Table 4. Activity against 113 clinical isolates of Proteus sp. in vitro

Compound	Number of strains inhibited at concentration (mcg/ml)					
	25	50	100	500	1,000	>1,000
1 (bicyclomycin)	0	0	0	0	0	113
48	1	45	34	4	0	29
58	0	3	62	17	2	29

This finding was confirmed by determining the susceptibility of 113 clinical isolates of Proteus sp. to compounds $\mathbf{4 8}$ and 58. The methyl ester 48 inhibited 70% of these isolates at a concentration of $100 \mathrm{mcg} / \mathrm{ml}$ or less, whereas bicyclomycin did not inhibit any of the isolates even at a concentration of $1,000 \mathrm{mcg} / \mathrm{ml}$ (Table 4).

In systemic infections due to E. coli, Klebsiella sp., and Enterobacter sp. derivatives 48 and 58 were found to be approximately as effective as bicyclomycin. Together with compound 49, however, they proved superior to the parent compound, displaying a marked protective effect against infections due to various strains of Proteus sp. (Table 5).

Experimental Section

Bicyclomycin monohydrate was provided by Fujisawa Pharmaceutical Co. Ltd. For reactions under anhydrous conditions it was dehydrated in vacuo at $70^{\circ} \mathrm{C}$.

Table 5. Efficacy of 5-alkylene and 5-imino derivatives of bicyclomycin against systemic infection due to Escherichia coli $205 \oplus$ in mice

Compound	$\mathrm{ED}_{50}(\mathrm{mg} / \mathrm{kg})$	
	s.c.*	p.o.*
$\mathbf{1}$ (bicyclomycin)	12	102
$\mathbf{4 7}$	>300	>300
$\mathbf{4 8}$	18	170
$\mathbf{4 9}$	50	>300
$\mathbf{5 0}$	>300	>300
$\mathbf{5 1}$	>300	>300
$\mathbf{5 2}$	60	>300
$\mathbf{5 3}$	>300	>300
$\mathbf{5 4}$	>300	>300
$\mathbf{5 5}$	>300	>300
$\mathbf{5 6}$	>300	>300
$\mathbf{5 7}$	55	>300
$\mathbf{5 8}$	18	>100
$\mathbf{5 9}$	>300	>300

\oplus infective dose 4×10^{6} c.f.u. per mouse

* route of administration

Infrared spectra were obtained in nujol using a Perkin-Elmer apparatus Model 141 (main absorptions given in cm^{-1}). The UV spectra were determined on a Cary- 15 spectrometer; the maxima are given in $\mathrm{nm}(\epsilon)$ of λ max. The H-NMR spectra were recorded on a Varian HA-100 instrument (100 MHz) in DMSO- d_{6}. The signals are listed in δ values (TMS: $\delta=0.0$), $\mathrm{J}=$ coupling constants in Hz . Column chromatography was performed on Kieselgel 60, Merck, and for layer chromatography Merck PF 254 plates were used.

Ethyl carbonates 2 and 3

A solution of ethyl chloroformate $(4 \mathrm{~g}, 37 \mathrm{mmol})$ in THF $(30 \mathrm{ml})$ was added dropwise to a stirred solution of bicyclomycin $(4 \mathrm{~g}, 13 \mathrm{mmol})$ in dry pyridine $(50 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$. The reaction mixture was then kept at room temperature for 2 hours, filtered and evaporated in vacuo. Column chromatography of the residue (silica gel, chloroform-methanol, $9: 1$) separated the reaction product into 2 components.

The compound eluted first $(1.6 \mathrm{~g}, 27 \%)$ was crystallized from diethyl ether. White crystals of 3, m.p. $197^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}-9 \pm 1^{\circ}(c 0.718$, DMSO). IR: $3500,3320,1770,1745,1700,1675$. NMR: 1.2 (t and $\mathrm{s} / 9 \mathrm{H} / \mathrm{CH}_{3}$), $2.2 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.5 \sim 4.4\left(\mathrm{~m} / \sim 8 \mathrm{H} / \mathrm{CH}_{2} \mathrm{O}\right), 5.07(\mathrm{~s} / \mathrm{HCOCOOEt}), 5.37$ and 5.06 $\left(\mathrm{d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 6.45(\mathrm{~s} / \mathrm{OH}), 7.0(\mathrm{~s} / \mathrm{OH}), 8.9$ and $8.95(\mathrm{~s} / \mathrm{NH})$. Anal. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{11}(\mathrm{C}, \mathrm{H}, \mathrm{N})$.

The second component $2(3.5 \mathrm{~g}, 70 \%$) formed white crystals from acetone - diethyl ether, m.p. $110^{\circ} \mathrm{C} .[\alpha]_{D}^{20}+48 \pm 1^{\circ}$ (c 0.530, DMSO). IR: 3450, 3300, 1745, 1700 (broad, unresolved). NMR: $1.22\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.22\left(\mathrm{t} / \mathrm{J}=7 / \mathrm{CH}_{3}\right), 2.3 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.5 \sim 4.5\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right), 4.14\left(\mathrm{q} / \mathrm{J}=7 / \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 5.07$ and $5.40\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 3.90$ and $5.56(\mathrm{AB} / \mathrm{J}=8 / \mathrm{CHOH}), 5.83(\mathrm{~s} / \mathrm{OH}), 6.85(\mathrm{~s} / \mathrm{OH}), 8.70$ and 8.72 (s/NH). Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{9}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Cyclic carbonate 4

Bicyclomycin ($3.02 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in 35 ml of dry pyridine, cooled to $-10^{\circ} \mathrm{C}$ and 15 ml of a dry tetrahydrofurane solution containing $1.95 \mathrm{ml}(14.5 \mathrm{mmol})$ of 2,2,2-trichloroethyl chloroformate was added dropwise during 20 minutes with stirring. The mixture was allowed to warm to room temperature and stirring was continued for 1 hour. After evaporation in vacuo $\left(35^{\circ} \mathrm{C}\right)$ the mixture could be separated into 2 compounds by silica gel column chromatography (chloroform - methanol,

9: 1). The compound eluted second was crystallized from methanol to give $\mathbf{5}(2.1 \mathrm{~g}, 64 \%) . \mathrm{m} . \mathrm{p} .181 \sim$ $183^{\circ} \mathrm{C}$. IR: 3400, 3250, 1763, 1690 (broad). NMR: $1.47\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 3.3 \sim 4.0\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right), 4.14 / 4.55$ $(\mathrm{AX} / \mathrm{J}=8 / \mathrm{HCOH}), 5.07$ and $5.40\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 7.0(\mathrm{~s} / \mathrm{OH}), 7.7(\mathrm{~s} / \mathrm{NH}), 9.0(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Cyclic carbonate 5

A methanolic solution of $4(2.0 \mathrm{~g}$ in 200 ml$)$ was maintained at room temperature for 3 days. After evaporation of the solvent pure 5 crystallized from methanol as white crystals ($1.0 \mathrm{~g}, 50 \%$), m.p. $180^{\circ} \mathrm{C}$. IR: 3450, 3260, 1817, 1695, 1685. NMR: $1.40\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.2 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.5 \sim 4.2$ $\left(\mathrm{m} / \mathrm{CH}_{2} \mathrm{O}\right), 5.07$ and $5.40\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 5.28(\mathrm{~s} / \mathrm{HC}-\mathrm{OCO}), 7.0(\mathrm{~s} / \mathrm{OH}), 6.8 \sim 7.5(\mathrm{broad} / \mathrm{OH}), 9.2$ (s / NH), $9.7(\mathrm{~s} / \mathrm{NH})$. MS: m/e $328\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Ethyl carbamate 6

Ethyl isocyanate ($0.6 \mathrm{~g}, 8.5 \mathrm{mmol}$) was dissolved in THF (8 ml) and added dropwise to a stirred solution of bicyclomycin ($1.2 \mathrm{~g}, 4 \mathrm{mmol}$) in dry pyridine (40 ml). After standing for 2 days at room temperature the reaction mixture was evaporated and the residue purified by column chromatography (silica gel, chloroform - acetone, $9: 1$) yielding pure $6(0.9 \mathrm{~g}, 60 \%$), white crystals (from acetone - diethyl ether), m.p. $185 \sim 188^{\circ} \mathrm{C}$, $[\alpha]_{D}^{23}+54 \pm 1^{\circ}(c 0.728$, DMSO). IR: 3550, 3350, 3230, 1680 (broad), 1670. NMR: $1.0\left(\mathrm{t} / \mathrm{J}=7 / \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 3.0\left(\mathrm{q} / \mathrm{J}=7 / \mathrm{CH}_{2}\right), 2.3 \sim 2.6\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.5 \sim 4.1\left(\mathrm{~m} / \mathrm{CH}_{2}\right.$ and $\mathrm{CHOH}) 5.04$ and $5.37\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 5.53(\mathrm{~d} / \mathrm{J}=8 / \mathrm{CHOH}), 6.8$ and $7.0(2 \mathrm{H} / \mathrm{OH}), 8.7(2 \mathrm{H} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3'-THP ether 8
To a solution of $\mathbf{1}(22.6 \mathrm{~g}, 70.5 \mathrm{mmol})$ in dioxane $(400 \mathrm{ml})$ dihydropyrane ($22.4 \mathrm{ml}, 245 \mathrm{mmol}$) and p-toluenesulfonic acid (0.03 g) were added. The mixture was stirred for 3 hours at room temperature, concentrated in vacuo and triturated with ether - petroleum ether. The resulting precipitate was isolated by filtration and then chromatographed on a short column (200 g of silica gel) with toluene - ethyl acetate ($1: 1$). Rotatory evaporation of the eluents and precipitation with ether gave 8 as an amorphous powder $\left(16.2 \mathrm{~g}, 58 \%\right.$), m.p. $170 \sim 110^{\circ} \mathrm{C}$. IR: $3415,3255,1690$. NMR: $1.22\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.53$ $\left(\mathrm{m} / 3 \times \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~m} / \mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}\right), 3.4 \sim 3.9\left(3 \times \mathrm{CH}_{2}-\mathrm{O}\right), 3.90 / 3.96$ and $5.27 / 5.33(\mathrm{AB} / \mathrm{J}=4 / \mathrm{H}-\mathrm{C}-\mathrm{OH})$, $4.55(\mathrm{~m} / \mathrm{O}-\mathrm{CH}-\mathrm{O}), 5.04$ and $5.37\left(\mathrm{~s} / \mathrm{CH}_{2}=\mathrm{C}\right), 5.35(\mathrm{~s} / \mathrm{OH}), 6.76(\mathrm{~s} / \mathrm{OH}), 8.61(\mathrm{~s} / \mathrm{NH}), 8.77(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8} . \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1^{\prime}-O-Benzoyl-3'-THP ether 9 and $1^{\prime}, 6-\mathrm{O}$-dibenzoyl- 3^{\prime}-THP ether $\mathbf{1 0}$

Benzoyl chloride ($2.4 \mathrm{ml}, 20.6 \mathrm{mmol}$) was added within 90 minutes to a solution of $\mathbf{8}(3.86 \mathrm{~g}$, $9.75 \mathrm{mmol})$ in pyridine $(15 \mathrm{ml})$. After 4 hours, the mixture was worked up with water - ethyl acetate. The organic layer was washed with water, dried with MgSO_{4} and concentrated in vacuo. The remaining foam (5.3 g) was chromatographed on silica gel (120 g) whereby 10 was eluted with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (97: 3). Precipitation from ligroin - ether gave $\mathbf{1 0}$ as an analytically pure amorphous powder (1.06 g , 17%), m.p. $135 \sim 138^{\circ} \mathrm{C}$. Rf $0.80\left(\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}, 4: 1\right)$. UV $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right): 232(27,200)$. IR: 3270, 1740, 1710. NMR: $1.29\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.58\left(\mathrm{~m} / 3 \times \mathrm{CH}_{2}\right), 2.69\left(\mathrm{~m} / \mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}\right), 3.4 \sim 4.1\left(\mathrm{~m} / 3 \times \mathrm{CH}_{2}-\mathrm{O}\right)$, $4.64(\mathrm{~m} / \mathrm{O}-\mathrm{CH}-\mathrm{O}), 5.36$ and $5.67\left(\mathrm{~s} / \mathrm{CH}_{2}=\mathrm{C}\right), 5.63 / 5.67^{*}(\mathrm{~s} / \mathrm{H}-\mathrm{C}-\mathrm{O}), 6.23$ (broad/OH), $7.4 \sim 8.3(\mathrm{~m} /$ $\left.2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right), 9.52(\mathrm{~s} / \mathrm{NH}), 9.59(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{10}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Further elution of the column with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(9: 1)$ and crystallization from ethyl acetate afforded $9\left(1.07 \mathrm{~g}, 23 \%\right.$), m.p. $161 \sim 165^{\circ} \mathrm{C}$ (dec.). Rf: $0.44\left(\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}, 4: 1\right)$. UV $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$: $230(14,100)$. IR: 3225, 1730, 1690. NMR ($\mathrm{DMSO}-\mathrm{d}_{6}$): $1.21\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.61\left(\mathrm{~m} / 3 \times \mathrm{CH}_{2}\right)$, ca. 2.55 $\left(\mathrm{m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.3 \sim 4.1\left(\mathrm{~m} / 3 \times \mathrm{CH}_{2}-\mathrm{O}\right), 4.66(\mathrm{broad} / \mathrm{O}-\mathrm{CH}-\mathrm{O}), 5.10$ and $5.44\left(\mathrm{~s} / \mathrm{CH}_{2}=\mathrm{C}\right), 5.60 / 5.64^{*}$ $(\mathrm{s} / \mathrm{HC}-\mathrm{O}), 6.07(\mathrm{~s} / \mathrm{OH}), 7.02(\mathrm{~s} / \mathrm{OH}), 7.4 \sim 8.1\left(\mathrm{~m} / \mathrm{c}_{6} \mathrm{H}_{5}\right), 8.75(\mathrm{~s} / \mathrm{NH}), 9.29(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{30}-\right.$ $\left.\mathrm{N}_{2} \mathrm{O}_{9}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1'-O-Benzoate 11

A solution of $9(1.0 \mathrm{~g}, 2.03 \mathrm{mmol})$ in 2 ml of methanol, 2 ml of acetic acid and 1 ml of water was allowed to stand at room temperature for 24 hours and then concentrated in vacuo. Repeated crystallization of the residue from $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ gave $\mathbf{1 1}(0.58 \mathrm{~g}, 70 \%)$, m.p. $185 \sim 189^{\circ} \mathrm{C}$. UV $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$:

[^3]$230(12,950)$. IR: $3270,1735,1690$ and 1670. NMR: $1.13\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.45\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.3 \sim 3.9$ $\left(\mathrm{m} / 2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 4.75($ broad $/ \mathrm{OH}), 5.04$ and $5.37\left(\mathrm{~d} / \mathrm{J}=1.5 / \mathrm{CH}_{2}=\mathrm{C}\right), 5.56(\mathrm{~s} / \mathrm{HC}-\mathrm{O}), 5.80(\mathrm{broad} / \mathrm{OH})$, $6.95,8.69$ and $9.38(\mathrm{~s} / \mathrm{OH}$ and $2 \times \mathrm{NH}), 7.3 \sim 8.0\left(\mathrm{~m} / \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-O-Acetyl-1', 3^{\prime}-di-THP ether 13 and 6-O-acetyl-bicyclomycin 14

$12(8.9 \mathrm{~g}, 19.8 \mathrm{mmol})$ was acetylated with acetic anhydride (36 ml) and pyridine (36 ml) at room temperature for 20 hours. Rotatory evaporation and separation of unidentified side products by chromatography with ethyl acetate afforded $13(3.35 \mathrm{~g}, 35 \%)$ as a white foam which was used for the next reaction without further purification.

To the above sample 60 ml of 50% aqueous acetic acid was added and the resulting solution was allowed to react at ambient temperature for 2 hours. The reaction mixture was concentrated in vacuo and the residue was chromatographed on 100 g of silica gel with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (9: 1) to give, after recrystallization from methanol - ethyl acetate, $14(0.71 \mathrm{~g}, 32 \%)$, m.p. $\sim 110^{\circ} \mathrm{C}$ (dec.) IR: 3415, 3260, 1765, 1710, 1690. NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right): 1.19\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s} / \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 2.53\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$, $3.32 / 3.48\left(\mathrm{AB} / \mathrm{J}=11 / \mathrm{CH}_{2}-\mathrm{O}\right), 3.5 \sim 4.0\left(\mathrm{~m} / \mathrm{CH}_{2}-\mathrm{O}\right), 3.95(\mathrm{~s} / \mathrm{H}-\mathrm{C}-\mathrm{O}), 5.20$ and $5.41\left(\mathrm{~s} / \mathrm{CH}_{2}=\mathrm{C}\right)$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3'-O-Mesyl bicyclomycin $\mathbf{1 5}$

Bicyclomycin 1 ($16 \mathrm{~g}, 50 \mathrm{mmol}$) was dissolved in 150 ml of dry pyridine and at $-10^{\circ} \mathrm{C}$ mesyl chloride $(10 \mathrm{ml}, 130 \mathrm{mmol})$ was added with stirring. The mixture was allowed to warm up to $0^{\circ} \mathrm{C}$ and stirred for 2 hours. After filtration the reaction mixture was evaporated in vacuo and pure $\mathbf{1 5}$ was obtained by crystallization from water ($14.1 \mathrm{~g}, 74 \%$) as white crystals, m.p. $151 \sim 153^{\circ} \mathrm{C}$. IR: 3560 , 3400, 3340, 3280, 1710 (broad), 1675. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Epoxide 16

A mixture of mesylate $15(18.0 \mathrm{~g}, 47.3 \mathrm{mmol})$, triethylamine $(20 \mathrm{~g}, \sim 200 \mathrm{mmol})$ and methanol $(500 \mathrm{ml})$ was stirred at room temperature for 3 hours. Then the clear solution was evaporated and the residue was crystallized from water yielding $16(8.6 \mathrm{~g}, 64 \%)$ as white crystals, m.p. $190 \sim 192^{\circ} \mathrm{C}$. IR : 3250 (broad), 1695, 1660. NMR: $1.29\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.2 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.64 / 3.07\left(\mathrm{AB} / \mathrm{J}=6 / \mathrm{CH}_{2} \mathrm{O}\right)$, $3.5 \sim 4.0\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right), 4.17 / 5.64(\mathrm{AX} / \mathrm{J}=6 / \mathrm{HCOH}), 5.06$ and $5.39\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 6.9(\mathrm{~s} / \mathrm{OH}), 7.8(\mathrm{~s} /$ $\mathrm{NH}), 8.8(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Tricyclic compound $\mathbf{1 7}$

A solution of $16(1.5 \mathrm{~g}, 5.3 \mathrm{mmol})$ and $\mathrm{NaI}(0.80 \mathrm{~g}, 5.3 \mathrm{mmol})$ in water (75 ml) was maintained at room temperature for 24 hours. After evaporation the residue was crystallized from acetone to give 17 as white prisms $(1.0 \mathrm{~g}, 67 \%)$ m.p. $120^{\circ} \mathrm{C}$. IR: $3440,3230,3100,1690$ (broad). NMR: 1.33 $\left(\mathrm{s} / \mathrm{CH}_{3}\right), \quad 2.2 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.0 \sim 4.3\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right), 3.29 / 3.54\left(\mathrm{AB} / \mathrm{J}=12 / \mathrm{CH}_{2}\right), 4.71(\mathrm{~s} / \mathrm{OH}), 3.64 /$ $5.66(\mathrm{AX} / \mathrm{J}=8 / \mathrm{HCOH}), 5.03$ and $5.35\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 6.82(\mathrm{~s} / \mathrm{OH}), 8.70(\mathrm{~s} / \mathrm{NH})$. MS: m/e $284\left(\mathrm{M}^{+}\right)$. Anal. ($\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$) C, H, N.

Bicyclomycin-C-3' thiol 18

A solution of $16(3.0 \mathrm{~g}, 10.6 \mathrm{mmol})$ and a few drops of triethylamine in methanol (300 ml) was saturated with $\mathrm{H}_{2} \mathrm{~S}$ during 30 minutes. After 24 hours at room temperature the reaction mixture was evaporated in vacuo and the residue was purified by column-chromatography (chloroform - methanol, 9: 1). From acetone 18 was obtained as white crystals ($1.9 \mathrm{~g}, 57 \%$), m.p. $183 \sim 185^{\circ} \mathrm{C}$. IR : several bands between 3000 and $3500,1695,1675$. NMR: $1.23\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.2 \sim 3.0\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.0$ (broad $\mathrm{s} / \mathrm{SH}), 3.6 \sim 4.0\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right), 4.04 / 5.34(\mathrm{AX} / \mathrm{J}=8 / \mathrm{HCOH}), 5.00$ and $5.35\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 5.60(\mathrm{~s} / \mathrm{OH})$, $6.74(\mathrm{~s} / \mathrm{OH}), 8.60(\mathrm{~s} / \mathrm{NH}), 8.82(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3'-Hydroxyethyl-thioether 19

To a suspension of the epoxide $(16,1.4 \mathrm{~g}, 5 \mathrm{mmol})$ in methanol (70 ml) mercaptoethanol (3.6 ml , 5.1 mmol) was added and the reaction mixture maintained at $60^{\circ} \mathrm{C}$ for 7 hours under nitrogen. The reaction mixture was filtered and evaporated in vacuo, and the residue was chromatographed on a silica gel column (chloroform - methanol, 9:1) to give 19 as a white amorphous solid ($0.80 \mathrm{~g}, 45 \%$). IR: 3250 (broad), 1695, 1685. NMR: $1.22\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.5 \sim 4.0\left(\mathrm{~m} / 4 \times \mathrm{CH}_{2}\right), 4.70\left(\mathrm{t} / \mathrm{J}=6 / \mathrm{CH}_{2} \mathrm{OH}\right), 5.40 / 4.0$ $(\mathrm{AX} / \mathrm{J}=8 / \mathrm{HCOH}), 5.04$ and $5.37\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 6.80(\mathrm{~s} / \mathrm{OH}), 8.64(\mathrm{~s} / \mathrm{NH}), 8.77(\mathrm{~s} / \mathrm{NH})$. Anal.
$\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl ketone 20

To an aqueous solution of bicyclomycin $\mathbf{1}(7.6 \mathrm{~g}, 23.8 \mathrm{mmol}$, in 200 ml$) \mathrm{H}_{5} \mathrm{IO}_{6}(5.5 \mathrm{~g}, 24.1 \mathrm{mmol})$ was added in portions under stirring at $0^{\circ} \mathrm{C}$. After 4 hours at $0^{\circ} \mathrm{C}$ the reaction mixture was neutralized with Amberlite IR 45 and evaporated in vacuo. Pure 20 was obtained by crystallization from $\mathrm{H}_{2} \mathrm{O}$ as colourless prisms $\left(3.7 \mathrm{~g}, 58 \%\right.$), decomposed above $225^{\circ} \mathrm{C}$. IR: $3480,3350,3280,1720,1685,1675$. NMR: $2.23\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.2 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.4 \sim 4.1\left(\mathrm{~m} / \mathrm{OCH}_{2}\right), 4.64 / 5.86(\mathrm{AX} / \mathrm{J}=8 / \mathrm{CHOH}), 5.08$ and $5.42\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 6.96(\mathrm{~s} / \mathrm{OH}), 7.8(\mathrm{~s} / \mathrm{NH}), 8.9(\mathrm{~s} / \mathrm{NH})$. MS: m/e $271\left(\mathrm{M}^{+}+1\right)$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{14^{-}}\right.$ $\left.\mathrm{N}_{2} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Triol 21

To a solution of the ketone $20(540 \mathrm{mg}, 2 \mathrm{mmol})$ in 40 ml of methanol - water (1:1) was added $\mathrm{NaBH}_{4}(40 \mathrm{mg}, 1.06 \mathrm{mmol})$. After 30 minutes the reaction mixture was evaporated and from the residue pure triol 21 was obtained by silica gel column-chromatography (chloroform - methanol, 9: 1). Crystallization from acetone - ether yielded 21 as colorless prisms ($310 \mathrm{mg}, 57 \%$) which decompose above $160^{\circ} \mathrm{C}$ and melt at about $205^{\circ} \mathrm{C}$. IR: $3450,3380,3270,1690$ (broad). NMR: spectrum of an epimeric mixture. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Oxime 22

A solution containing the ketone $20(1.62 \mathrm{~g}, 6.0 \mathrm{mmol})$, hydroxylamine hydrochloride (0.42 g , $6.0 \mathrm{mmol})$ and pyridine (1 ml) in methanol $(60 \mathrm{ml})$ was stirred at room temperature for 1 hour. After evaporation the residue was dissolved in chloroform - methanol $(9: 1)$ and passed through a silica gel column. Crystallization of the concentrated eluate from methanol-ether yielded colorless prisms of the oxime $22(1.07 \mathrm{~g}, 63 \%)$, m.p. $133 \sim 135^{\circ} \mathrm{C}$. IR: 3200 (broad), 1705, 1690. NMR: $1.84\left(\mathrm{~s} / \mathrm{CH}_{3}\right)$, $3.4 \sim 4.0\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 4.61 / 5.71(\mathrm{AX} / \mathrm{J}=8 / \mathrm{HCOH}), 5.07$ and $5.42\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 6.90(\mathrm{~s} / \mathrm{OH}), 8.04(\mathrm{~s} /$ $\mathrm{NH}), 8.9(\mathrm{~s} / \mathrm{NH}), 11.02(\mathrm{~s} / \mathrm{OH})$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Ethyl ester 23

A solution of the ketone ($\mathbf{2 0}, 4.32 \mathrm{~g}, 16 \mathrm{mmol}$) and ethoxycarbonylmethylene-triphenylphosphorane $(5.60 \mathrm{~g}, 16 \mathrm{mmol})$ in dry dioxane $(1,000 \mathrm{ml})$ was refluxed under nitrogen for 3 days. The reaction mixture was evaporated to dryness in vacuo and the residue was purified by silica gel column-chromatography (chloroform-methanol, 9:1). After elution of triphenylphosphine oxide pure 23 was obtained and crystallized from acetone - ether ($3.0 \mathrm{~g}, 55 \%$), m.p. $143 \sim 144^{\circ} \mathrm{C}$. IR: $3540,3420,3200,3100,1720$, 1695. NMR: $1.24 / 4.12\left(\mathrm{t} / \mathrm{q}, \mathrm{J}=7 / \mathrm{C}_{2} \mathrm{H}_{5}\right), 2.10\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{C}=\right), 2.2 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.4 \sim 4.0\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right)$, $4.68 / 5.73(\mathrm{AX} / \mathrm{J}=6 / \mathrm{HCOH}), 5.06$ and $5.40\left(\mathrm{~d} / \mathrm{J}=1.5 / \mathrm{CH}_{2}=\mathrm{C}\right), 6.10(\mathrm{~s} / \mathrm{CH}=\mathrm{C}), 6.90(\mathrm{~s} / \mathrm{OH}), 7.55(\mathrm{~s} /$ $\mathrm{NH}), 8.80(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

p-Nitrobenzylester 24

A solution of the ketone $\mathbf{2 0}(5.4 \mathrm{~g}, 20 \mathrm{mmol})$ and p-nitrobenzyloxycarbonylmethylene - triphenylphosphorane $(9.1 \mathrm{~g}, 20 \mathrm{mmol})$ in dry dioxane $(500 \mathrm{ml})$ was maintained at $60^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was evaporated and the residual red oil was purified by column chromatography (chloroform-methanol, 19:1). Pure 24 was recrystallized from methanol to yield pale yellow material $(3.0 \mathrm{~g}, 38 \%)$, m.p. $140^{\circ} \mathrm{C}$. IR: $3480,3370,3230,3100,1700$, UV (EtOH): $264(10,900)$. NMR: 2.16 $\left(\mathrm{s} / \mathrm{CH}_{3}-\mathrm{C}=\right), 2.2 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.2 \sim 4.2\left(\mathrm{~m} / \mathrm{OCH}_{2}\right), 4.76 / 5.81(\mathrm{AX} / \mathrm{J}=6 / \mathrm{HCOH}), 5.08$ and 5.43 $\left(\mathrm{d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 5.30\left(\mathrm{~s} / \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 6.25(\mathrm{~s} /-\mathrm{CH}=), 6.92(\mathrm{~s} / \mathrm{OH}), 7.67(\mathrm{~s} / \mathrm{NH}), 7.6 \sim 8.3\left(\mathrm{~A}_{2} \mathrm{~B}_{2} /\right.$ $\left.\mathrm{J}=9 / \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.92(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{9}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Primary alcohol 27
A solution of bicyclomycin $(19 \mathrm{~g}, 0.06 \mathrm{~mol})$ in water $(300 \mathrm{ml})$ was treated with $\mathrm{H}_{5} \mathrm{IO}_{6}(34 \mathrm{~g}$, 0.15 mol) at $0^{\circ} \mathrm{C}$ for 2 hours. The oxidation mixture was filtered through Amberlite IR-45 (OH^{-}-form) and the filtrate evaporated to dryness. Crude aldehyde 25 was obtained as a white solid from the residue by extraction with hot dioxane, filtration from insoluble material and evaporation $(12 \mathrm{~g}, 89 \%)^{2}$.

To an aqueous solution of $25(2.26 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 250 ml water was added $\mathrm{NaBH}_{4}(0.5 \mathrm{~g}, 0.013$ mol) at $25^{\circ} \mathrm{C}$ and the mixture allowed to stand for 30 minutes. After evaporation in vacuo the residue was extracted with chloroform - methanol (9:1) and the resulting solution purified by filtration through
silica gel with chloroform - methanol $(9: 1)$ as eluant. Pure 27 crystallized from methyl ethyl ketone $(1.37 \mathrm{~g}, 60 \%)$, m.p. $220 \sim 221^{\circ} \mathrm{C}$. IR: $3490,3380,3200,3080,1693$. NMR: $3.0 \sim 4.2\left(\mathrm{~m} / \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{O}\right)$, $4.88\left(\mathrm{t} / \mathrm{J}=6 / \mathrm{CH}_{2} \mathrm{OH}\right), 5.05$ and $5.39\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 6.8(\mathrm{~s} / \mathrm{OH}), 8.7(\mathrm{~s} / 2 \mathrm{NH})$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$ C, H,N.

Diketone 28

A solution of the aldehyde $25(6.0 \mathrm{~g}, 26.5 \mathrm{mmol})$, acetylacetone $(6.0 \mathrm{~g}, 60 \mathrm{mmol})$ and piperidine acetate $(0.05 \mathrm{~g})$ in pyridine $(70 \mathrm{ml})$ was allowed to stand at room temperature for 2 hours. The reaction mixture was evaporated to give a yellow residue which was purified by silica gel columnchromatography (chloroform - methanol, 9:1). Colorless crystals of $28(2.0 \mathrm{~g}, 23 \%)$ were obtained from ethanol-ether, m.p. $186 \sim 187^{\circ} \mathrm{C}$. IR: $3420,3290,1695$. NMR: spectrum of epimeric mixture. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Diester 29

A solution of the aldehyde $25(5.0 \mathrm{~g}, 22.1 \mathrm{mmol})$, diethyl malonate $(3.6 \mathrm{~g}, 22.5 \mathrm{mmol})$ and piperidine $(0.05 \mathrm{~g})$ in pyridine $(50 \mathrm{ml})$ was allowed to stand at room temperature for 2 hours. The reaction mixture was evaporated and the residue was chromatographed (chloroform - methanol, 4:1). Crystallization from isopropanol gave colorless crystals of $29(1.4 \mathrm{~g}, 16 \%)$, m.p. $165 \sim 172^{\circ} \mathrm{C}$. IR: 3550,3400 , $3220,3130,1740,1725,1690$ (broad). NMR: $1.14\left(\mathrm{t} / \mathrm{J}=7 / \mathrm{CH}_{3}\right), 1.16\left(\mathrm{t} / \mathrm{J}=6 / \mathrm{CH}_{3}\right), 2.2 \sim 2.8(\mathrm{~m} /$ $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.4 \sim 3.8\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.8 \sim 4.3\left(\mathrm{~m} / \mathrm{HCOH}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.90 \sim 5.0(\mathrm{dd} / \mathrm{J}=8 / \mathrm{CH}), 5.37$ and $5.04\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 5.83(\mathrm{~d} / \mathrm{J}=8 / \mathrm{HCOH}), 6.82(\mathrm{~s} / \mathrm{OH}), 8.75(\mathrm{~s} / \mathrm{NH}), 8.8(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{9}\right)$ C, H,N.
p-Nitrobenzylester 30
A solution of the aldehyde $25(1.77 \mathrm{~g}, 7.8 \mathrm{mmol})$, p-nitrobenzyloxycarbonylmethylene-triphenylphosphorane ($3.57 \mathrm{~g}, 7.8 \mathrm{mmol}$) in dioxane (300 ml) was maintained at $45^{\circ} \mathrm{C}$ for 3 hours. The reaction mixture was evaporated and from the residue the pure product 30 was obtained by silica gel columnchromatography (chloroform - methanol, 19:1) and crystallization from acetone - ether as pale yellow prisms ($0.9 \mathrm{~g}, 29 \%$), melting between 110 and $160^{\circ} \mathrm{C}$. UV (ethanol): $265(10,200)$. IR: 3450, 3200, 3100, 1730, 1690. NMR: spectrum of a $2: 1$ cis/trans mixture. $6.12 / 6.25(\mathrm{AB} / \mathrm{J}=13 / \mathrm{CH}=\mathrm{CH}$ cis $), 6.22 \sim$ $6.88(\mathrm{AB} / \mathrm{J}=16 / \mathrm{CH}=\mathrm{CH}$ trans $)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Enone 31

The aldehyde 25 ($10 \mathrm{~g}, 44.2 \mathrm{mmol}$), triphenylphosphoranylidene-2-propanone ($14.2 \mathrm{~g}, 44.6 \mathrm{mmol}$) and dioxane $(500 \mathrm{ml})$ were maintained at $80^{\circ} \mathrm{C}$ for 5 hours under nitrogen. The reaction mixture was evaporated and from the residue the pure product 31 was isolated by silica gel column-chromatography (chloroform-methanol, 4:1) followed by crystallization from aqueous ethanol ($2.35 \mathrm{~g}, 20 \%$). m.p. $209^{\circ} \mathrm{C}$. IR: 3440, 3180, 3080, 1705, 1685. NMR: $2.22\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.2 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.3 \sim 4.1(\mathrm{~m} /$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.04$ and $5.38\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 6.23 / 6.68(\mathrm{AB} / \mathrm{J}=16 / \mathrm{CH}=\mathrm{CH}$ trans $), 6.90(\mathrm{~s} / \mathrm{OH}), 9.0(\mathrm{~s} / \mathrm{NH})$, $9.2(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Ketal 32

A mixture of the aldehyde $25(5.0 \mathrm{~g}, 22.1 \mathrm{mmol})$, dioxane $(300 \mathrm{ml})$, acetone $(100 \mathrm{ml})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. $10 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~g})$ was stirred at room temperature for 48 hours. The reaction mixture was filtered and evaporated in vacuo to give a yellow residue. Purification by silica gel column-chromatography (chloro-form-methanol, $5: 1$) and crystallization from acetone gave colorless crystals of $32(0.5 \mathrm{~g}, 7.9 \%)$, m.p. $172 \sim 173^{\circ} \mathrm{C}$. IR: $3450,3290,3100,1685$. NMR: $1.73\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.50\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 3.4 \sim 4.1\left(\mathrm{~m} / \mathrm{CH}_{2}\right)$, 5.42 and $5.07\left(\mathrm{~d} / \mathrm{J}=2 / \mathrm{CH}_{2}=\mathrm{C}\right), 5.23 / 7.20(\mathrm{AX} / \mathrm{J}=5 / \mathrm{HCOH}), 6.97(\mathrm{~s} / \mathrm{OH}), 8.8(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{16}-\right.$ $\mathrm{N}_{2} \mathrm{O}_{6}$) C, H,N.

N-Methyl-acetonide 34

To a solution of 20.0 g (58.4 mmol) of 33 in 120 ml of DMF were added 11.0 g of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $9.1 \mathrm{~g}(64.2 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{I}$ and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 6 hours. The mixture was poured on 600 ml of ice-water and extracted with $8 \times 200 \mathrm{ml}$ of ethyl acetate. The extracts were washed with water, dried, and evaporated in vacuo. The residue (19.8 g) was chromatographed over 500 g of silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$ and recrystallized from ether-pentane to give 8.15 g
(39.1%) of colorless crystals of 34, m.p. $131 \sim 134^{\circ} \mathrm{C} . \mathrm{Rf} 0.68\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$, IR: 3360 (sh), 3310, 1720, 1680, 1640. NMR: $1.32 / 1.38 / 1.42\left(3 \times \mathrm{s} / \mathrm{CH}_{3}\right), 1.98 \sim 2.60\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 2.75\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{N}\right)$, $3.53 \sim 3.85\left(\mathrm{~m} / \mathrm{OCH}_{2}\right), 3.68 / 4.33\left(\mathrm{AB} / \mathrm{J}=8 / \mathrm{CH}_{2} \mathrm{O}\right), 4.12 / 5.80(\mathrm{AB} / \mathrm{J}=8 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 5.18$ and $5.47(2$ $\left.\times \mathrm{m} / \mathrm{CH}_{2}=\mathrm{C}\right), 7.09(\mathrm{~s} / \mathrm{OH}), 8.14(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$.

From other fractions a sample identified as $35^{*}(0.225 \mathrm{~g}, 1 \%)$ was obtained after crystallization from ether. The following compounds were obtained in substantially the same way as described above:

N, N-Dimethyl-acetonide 35

$0.56 \mathrm{~g}(18 \%)$ of colorless crystals of 35 resulted from the reaction of $3.0 \mathrm{~g}(8.41 \mathrm{mmol})$ of 34 with $1.32 \mathrm{~g}(9.25 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{I}$ in the presence of 1.6 g of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 20 ml of DMF at $40^{\circ} \mathrm{C}$ for 24 hours; followed by chromatography and crystallization from ether, m.p. $182 \sim 185^{\circ} \mathrm{C}$. Rf 0.75 $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$. IR: 3330, $1700,1670(\mathrm{sh})$. NMR $1.12\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~s} / 2 \times \mathrm{CH}_{3}\right), 1.93 \sim 2.63$ $\left(\mathrm{m} / \mathrm{CH}_{2}\right), 2.73\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{N}\right), 2.95\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{N}\right), 3.14 \sim 3.99\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right), 3.73 / 3.98\left(\mathrm{AB} / \mathrm{J}=9 / \mathrm{CH}_{2} \mathrm{O}\right), 4.15 /$ $6.50(\mathrm{AB} / \mathrm{J}=10 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 5.21$ and $5.51\left(2 \times \mathrm{m} / \mathrm{CH}_{2}=\mathrm{C}\right), 7.53(\mathrm{~s} / \mathrm{OH})$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$.

$\mathrm{N}, \mathrm{N}, \mathrm{O}$-Trimethyl-acetonide 36

Thick-layer chromatography on silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$ of an additional fraction of the chromatography used for the preparation of 35 , followed by recrystallization from ether-pentane, yielded $0.32 \mathrm{~g}(10 \%)$ of white needles of 36 , m.p. $191 \sim 192^{\circ} \mathrm{C}$. Rf $0.80\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$. IR: 3330, 1690, $1660(\mathrm{sh})$. NMR: $1.11\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~s} / 2 \times \mathrm{CH}_{3}\right), 1.93 \sim 2.63\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 2.73$ (s/ $\left.\mathrm{CH}_{3}-\mathrm{N}\right), 2.97\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{N}\right), 3.13 \sim 3.99\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right), 3.26\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{O}\right), 3.73 / 3.99\left(\mathrm{AB} / \mathrm{J}=9 / \mathrm{CH}_{2} \mathrm{O}\right), 4.18 /$ $6.22(\mathrm{AB} / \mathrm{J}=10 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 5.27$ and $5.46\left(2 \times \mathrm{m} / \mathrm{CH}_{2}=\mathrm{C}\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$.

N-Methyl-bicyclomycin 37

A solution of $2.0 \mathrm{~g}(5.6 \mathrm{mmol})$ of 34 in 70 ml of MeOH and $56 \mathrm{ml}(5.6 \mathrm{mmol})$ of $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ was stirred at room temperature for 24 hours, whereafter the solution was neutralized with 75 ml of a suspension of $1.77 \mathrm{~g}(5.6 \mathrm{mmol})$ of $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ in water. After the BaSO_{4} was separated by centrifugation, the filtrate was evaporated to dryness at $30^{\circ} \mathrm{C}$ in vacuo. Chromatography of the oily residue on 60 g of silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$ and crystallization from pentane gave 1.6 g $\left(90.3 \%\right.$) of hygroscopic, white crystals of 37 , melting at $88 \sim 98^{\circ} \mathrm{C}$ (dec.). $\mathrm{Rf} 0.2\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$. IR: $3400,3300(\mathrm{sh}), 1730(\mathrm{sh}), 1680$. NMR: $1.18\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.88 \sim 2.63\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 2.71\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{N}\right)$, $3.28 \sim 3.86\left(\mathrm{~m} / 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.99 / 5.26(\mathrm{AB} / \mathrm{J}=8 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.49($ broad $/ \mathrm{OH}), 5.10 \sim 5.50\left(\mathrm{~m} / \mathrm{CH}_{2}=\mathrm{C} /\right.$ $2 \times \mathrm{OH}), 6.96(\mathrm{~s} / \mathrm{OH}), 9.13$ (broad/NH). Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{H}_{2} \mathrm{O}(0.8 \%)$.

The following compounds were obtained in a similar way as described for 37:

N,N-Dimethyl-bicyclomycin 38

$1.51 \mathrm{~g}(73.6 \%)$ of 38 resulted from the reaction of $2.3 \mathrm{~g}(6.2 \mathrm{mmol})$ of 35 with $62 \mathrm{ml}(6.2 \mathrm{mmol})$ of $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 70 ml of MeOH at room temperature for 6 hours, followed by chromatography and crystallization from CHCl_{3} as a very hygroscopic, microcrystalline powder, melting at $65 \sim 80^{\circ} \mathrm{C}$. $\operatorname{Rf} 0.37\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$. IR: 3400, 1670. NMR $\left(\mathrm{CDCl}_{3}\right): 1.12\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.11 \sim 2.67\left(\mathrm{~m} / \mathrm{CH}_{2}\right)$, $2.91\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{N}\right), 3.10\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{N}\right), 3.19 \sim 4.09\left(\mathrm{~m} / 2 \times \mathrm{CH}_{2} \mathrm{O} / \mathrm{OH}\right), 4.22 / 5.86(\mathrm{AB} / \mathrm{J}=10 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 5.21$ and $5.66\left(2 \times \mathrm{m} / \mathrm{CH}_{2}=\mathrm{C}\right), 5.40(\mathrm{broad} / \mathrm{OH}), 7.28\left(\mathrm{~s} / \mathrm{CHCl}_{3}\right)$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}\right), \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{H}_{2} \mathrm{O}(1.0 \%)$.

$\mathrm{N}, \mathrm{N}, \mathrm{O}-$ Trimethyl-bicyclomycin 39

$0.78 \mathrm{~g}(73.4 \%)$ of 39 resulted from the reaction of $1.2 \mathrm{~g}(3.12 \mathrm{mmol})$ of 36 with $31.2 \mathrm{ml}(3.12 \mathrm{mmol})$ of $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 60 ml of MeOH at room temperature for 15 hours, purification by thick-layer chromatography and crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - ether as a white, microcrystalline powder, melting at $153 \sim 161^{\circ} \mathrm{C}$. Rf $0.48\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$. IR: 3530, 3330, 1700, $1670(\mathrm{sh})$. NMR: $1.03\left(\mathrm{~s} / \mathrm{CH}_{3}\right)$, $1.89 \sim 2.60\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 2.69\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{N}\right), 2.96\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{N}\right), 3.0 \sim 4.0\left(\mathrm{~m} / 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.26\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{O}\right), 4.13 /$ $5.47(\mathrm{AB} / \mathrm{J}=10 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.29(\mathrm{~s} / \mathrm{OH}), 4.65\left(\mathrm{t} / \mathrm{J}=5 / \mathrm{CH}_{2}-\mathrm{OH}\right), 5.23$ and $5.43\left(2 \times \mathrm{m} / \mathrm{CH}_{2}=\mathrm{C}\right)$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$.

Dibromo bicyclomycin 40
To a solution of $1(5.0 \mathrm{~g}, 15.6 \mathrm{mmol})$ in dioxane (200 ml) pyridinium hydrobromide perbromide

[^4]$(10.0 \mathrm{~g}, 31.3 \mathrm{mmol})$ was added in small portions over a period of 6 hours. After having been stirred overnight the suspension was filtered and the filtrate was concentrated in vacuo. 40 was purified by chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}, 4: 1\right)$ and crystallization from ethyl acetate to give $4.15 \mathrm{~g}(55 \%)$ of colorless crystals, m.p. $128 \sim 133^{\circ} \mathrm{C}$. IR: $3225,1705,1675$. NMR (DMSO- d_{6}): $1.16\left(\mathrm{~s} / \mathrm{CH}_{3}\right)$, $1.8 \sim 2.8\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.2 \sim 3.5\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.85 / 5.28(\mathrm{AB} / \mathrm{J}=7.5 / \mathrm{HC}-\mathrm{OH}), 3.7 \sim 4.0\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.98 / 4.24$ $\left(\mathrm{AB} / \mathrm{J}=12 / \mathrm{CH}_{2}\right), 4.50(\mathrm{broad} / \mathrm{OH}), 5.20(\mathrm{~s} / \mathrm{OH}), 7.18(\mathrm{~s} / \mathrm{OH}), 8.84(\mathrm{~s} / \mathrm{NH}), 9.14(\mathrm{~s} / \mathrm{NH})$ and signals of $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Br}_{2}\right.$. $\left.\frac{1}{4} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Oxidation of bicyclomycin with $\mathrm{OsO}_{4}-\mathrm{H}_{2} \mathrm{O}_{2}$
To a solution of $1(3.20 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(64 \mathrm{mg}, 0.25 \mathrm{mmol})$ in water (15 ml) hydrogen peroxide ($\sim 30 \%, 1.01 \mathrm{ml}$) was added. The mixture was stirred at ice bath temperature for 4 hours and then lyophilized. The residual foam was chromatographed on silica gel (120 g) whereby a side product (0.815 g), $\mathrm{Rf}=0.19$, was eluted with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(9: 1)$.

Further elution of the column with $\mathrm{CH}_{3} \mathrm{OH}$ afforded, after crystallization from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{3}-$ $\mathrm{COOC}_{2} \mathrm{H}_{5}$, the hexol $41\left(1.20 \mathrm{~g}, 36 \%\right.$), m.p. $180 \sim 185^{\circ} \mathrm{C}$ (dec.). IR: $3355,1695,1675$. NMR: 1.16 $\left(\mathrm{CH}_{3}\right), 1.6 \sim 2.0\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.2 \sim 4.1\left(\mathrm{~m} / 3 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.85 / 5.10(\mathrm{AB} / \mathrm{J}=7.5 / \mathrm{HC}-\mathrm{OH}), 4.2 \sim 4.6(\mathrm{~m} / 3 \times$ $\mathrm{OH}), 5.06(\mathrm{~s} / \mathrm{OH}), 6.51(\mathrm{~s} / \mathrm{OH}), 8.10(\mathrm{~s} / \mathrm{NH}), 8.90(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{9} \mathrm{~N}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Oxidation of bicyclomycin with $\mathrm{Na}_{2} \mathrm{WO}_{4}-\mathrm{H}_{2} \mathrm{O}_{2}$ to 42 and 43 .
To a solution of $\mathbf{1}(7.5 \mathrm{~g}, 23.4 \mathrm{mmol})$ in acetic acid $(15.0 \mathrm{ml})$ and water $(20 \mathrm{ml}), \mathrm{Na}_{2} \mathrm{WO}_{4}(0.25 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(\sim 30 \%, 3.0 \mathrm{ml})$ were added and the solution was stirred at ambient temperature for 18 hours. Then 0.5 ml of $\mathrm{CH}_{3} \mathrm{SCH}_{3}$ were added ($\mathrm{KI} /$ starch test) and the mixture was lyophilized. Repeated crystallization of the residue from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ gave the epoxide $43(1.95 \mathrm{~g}, 26 \%)$, m.p. $194 \sim 197^{\circ} \mathrm{C}$. IR: $3450,3290,1685$. NMR: $1.17(\mathrm{~s}), 1.6 \sim 2.0\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 2.85 / 3.00\left(\mathrm{AB} / \mathrm{J}=5 / \mathrm{CH}_{2} \mathrm{O}\right)$, $3.3 \sim 4.0\left(\mathrm{~m} / 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.94 / 5.23(\mathrm{AB} / \mathrm{J}=7.5 / \mathrm{HC}-\mathrm{OH}), 4.50(\mathrm{t} / \mathrm{J}=5 / \mathrm{OH}), 5.15(\mathrm{~s} / \mathrm{OH}), 6.42(\mathrm{~s} / \mathrm{OH})$, $8.72(\mathrm{~s} / \mathrm{NH}), 9.04(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Chromatography of the mother liquors with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (4:1) gave, after elution of small amounts of $43,2.83 \mathrm{~g}(31 \%)$ of 42. An analytically pure sample was obtained from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{3}-$ $\mathrm{COOC}_{2} \mathrm{H}_{5}$, m.p. $118 \sim 122^{\circ} \mathrm{C}$. IR: $3415,3270,1730$. NMR: $1.18\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.8 \sim 2.0\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 2.03$ $\left(\mathrm{s} / \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 3.3 \sim 4.4\left(\mathrm{~m} / 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.88 / 5.18(\mathrm{AB} / \mathrm{J}=7.5 / \mathrm{HC}-\mathrm{OH}), 4.10 / 4.30\left(\mathrm{AB} / \mathrm{J}=12 / \mathrm{CH}_{2} \mathrm{O}\right)$, $4.46(\mathrm{broad} / \mathrm{OH}), 4.97(\mathrm{~s} / \mathrm{OH}), 5.14(\mathrm{~s} / \mathrm{OH}), 7.28(\mathrm{~s} / \mathrm{OH}), 8.68(\mathrm{~s} / \mathrm{NH}), 8.96(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10}\right.$. $\left.\mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Preparation of epoxide 43 with peroxytrifluoroacetic acid
A solution of peroxytrifluoroacetic acid was prepared from 90% hydrogen peroxide $(3.75 \mathrm{ml})$, trifluoroacetic anhydride $(23.8 \mathrm{ml})$ and ethylene dichloride $(125 \mathrm{ml})$. This reagent was added dropwise over a 45 -minute period to a solution of $\mathbf{1}(10.0 \mathrm{~g}, 31.3 \mathrm{mmol})$ in DMF $(100 \mathrm{ml})$ and ethylene dichloride $(150 \mathrm{ml})$. Stirring was continued for 90 minutes and the mixture was then cooled to ice bath temperature and filtered. The crystalline residue was washed with ethylene dichloride and dried to give $43(6.7 \mathrm{~g}, 67 \%)$. A second crop of $43(1.3 \mathrm{~g}, 13 \%)$ was obtained from the filtrate after addition of dimethyl sulfide $(1.0 \mathrm{ml})$, concentration in vасиo and crystallization. An analytical sample was obtained from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ and identified with 43 resulting from the oxidation with $\mathrm{Na}_{2} \mathrm{WO}_{4}-\mathrm{H}_{2} \mathrm{O}_{2}$.

Acetonide 43a

2,2-Dimethoxypropane $(100 \mathrm{ml})$ and $\mathrm{TsOH}(0.10 \mathrm{~g})$ were added to a suspension of $43(10.0 \mathrm{~g}$, $31.4 \mathrm{mmol})$ in acetone $(200 \mathrm{ml})$ - dioxane $(50 \mathrm{ml})$. The mixture was stirred at ambient temperature whereby a clear solution was obtained. After 3 hours, triethylamine (10 ml) was added and the solvents were evaporated at reduced pressure. Crystallization of the residual white foam from methanol provided $43 \mathrm{a}(8.81 \mathrm{~g}, 78 \%)$. An analytical sample was obtained by recrystallization from acetone - ether, m.p. $190 \sim 192^{\circ} \mathrm{C}$. IR: $3470,3300,3200,1700,1675$. NMR: $1.25\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.35$ and $1.38\left(\mathrm{~s} / \mathrm{CH}_{3}-\mathrm{C}-\right.$ $\left.\mathrm{CH}_{3}\right), 1.7 \sim 2.0\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 2.55 / 3.05\left(\mathrm{AB} / \mathrm{J}=5 / \mathrm{CH}_{2} \mathrm{O}\right), 3.65 / 4.34\left(\mathrm{AB} / \mathrm{J}=8 / \mathrm{CH}_{2} \mathrm{O}\right), 3.85\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right)$, $4.01 / 5.78(\mathrm{AB} / \mathrm{J}=8 / \mathrm{HC}-\mathrm{OH}), 6.63(\mathrm{~s} / \mathrm{OH}), 8.10(\mathrm{~s} / \mathrm{NH}), 8.95(\mathrm{~s} / \mathrm{NH}) . \quad$ Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Sulfonamide-acetonide 44a

A solution of $1.43 \mathrm{~g}(4.0 \mathrm{mmol})$ of 43 a and $0.69 \mathrm{~g}(4.0 \mathrm{mmol})$ of sulfanilamide was stirred at $54^{\circ} \mathrm{C}$
for 33 hours and then evaporated. Chromatography on 320 g of silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($10: 1$), followed by pure MeOH , and precipitation from ether-hexane gave $1.33 \mathrm{~g}(63 \%)$ of 44a as an hygroscopic, white powder, melting at $175 \sim 182^{\circ} \mathrm{C}$ (dec.). Rf $0.33\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 4: 1\right)$. UV (EtOH): $289(23,600)$. IR: 3330, 1700. NMR: $1.28\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.37 / 1.42\left(2 \times \mathrm{s} / \mathrm{CH}_{3}\right), 1.87\left(\mathrm{~m} / \mathrm{CH}_{2}\right)$, $3.38\left(\operatorname{broad} / \mathrm{CH}_{2}-\mathrm{NH}\right), 3.65 / 4.33\left(\mathrm{AB} / \mathrm{J}=8 / \mathrm{CH}_{2} \mathrm{O}\right), 3.85\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right), 3.96 / 5.76(\mathrm{AB} / \mathrm{J}=6 / \mathrm{H}-\mathrm{C}-\mathrm{OH})$, $5.98\left(\mathrm{broad} / \mathrm{NHCH}_{2}\right), 6.56 / 7.53\left(\mathrm{~A}_{2} \mathrm{~B}_{2} / 4 \mathrm{H} / \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{2}\right), 6.83$ (broad $\left./ \mathrm{OH} / \mathrm{SO}_{2} \mathrm{NH}_{2} / \mathrm{NH}\right), 8.05(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}, \mathrm{H}_{2} \mathrm{O}(2.1 \%)$.

Sulfonamide 44

A solution of 2.0 g (3.76 mmol) of 44 a in 75 ml of MeOH and $75.2 \mathrm{ml}(7.52 \mathrm{mmol})$ of 0.2 N $\mathrm{H}_{2} \mathrm{SO}_{4}$ was stirred at room temperature for 16 hours, whereafter the solution was neutralized with 100 ml of a suspension of $2.37 \mathrm{~g}(7.52 \mathrm{mmol})$ of $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ in water. After the BaSO_{4} was separated by centrifugation, the filtrate was evaporated at $30^{\circ} \mathrm{C}$. Chromatography of the solid, white residue on 100 g of silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(4: 1)$, followed by $\mathrm{CHCl}_{3}-\mathrm{MeOH}(3: 2)$, and crystallization from MeOH - ether gave $1.2 \mathrm{~g}(65 \%)$ of 44 as a very hygroscopic, microcrystalline powder, melting at $167 \sim 174^{\circ} \mathrm{C}$ (dec.). Rf $0.39\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 3: 2\right)$. UV (EtOH): $270(21,600)$. IR 3420 (sh), 3300, 1700. NMR 1.06 (t/ether), $1.16\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.86\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.16 \sim 3.55\left(\mathrm{~m} / \mathrm{CH}_{2}-\mathrm{NH} / \mathrm{CH}_{2} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O} /\right.$ ether $)$, $3.77\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{O}\right), 3.88 / 5.18(\mathrm{AB} / \mathrm{J}=8 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.33\left(\mathrm{t} / \mathrm{J}=5 / \mathrm{CH}_{2} \mathrm{OH}\right), 4.48(\mathrm{~s} / \mathrm{OH}), 4.82(\mathrm{~s} / \mathrm{OH}), 5.15$ $(\mathrm{s} / \mathrm{OH}), 6.62 \sim 7.53\left(\mathrm{~A}_{2} \mathrm{~B}_{2} / 4 \mathrm{H} / \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{SO}_{2}\right), 6.87\left(\mathrm{~s} / \mathrm{SO}_{2}-\mathrm{NH}_{2}\right), 8.22(\mathrm{~s} / \mathrm{NH}), 9.02(\mathrm{~s} / \mathrm{NH})$.

Spiro isoxazoline 45

To a solution of $\mathbf{1}(10.0 \mathrm{~g}, 31.3 \mathrm{mmol}$) in dioxane (300 ml) were gradually added 2-chloro-2-hy-droxyimino-ethyl acetate $(19.53 \mathrm{~g}, 0.129 \mathrm{~mol})$ and triethylamine $(19.3 \mathrm{ml})$ over a period of 95 hours. After 110 hours at room temperature the mixture was filtered and the filtrate was concentrated in vacuo. Trituration of the residue with ether produced a white precipitate which was separated by filtration and chromatographed $\left(\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}, 9: 1\right)$ to give, after recrystallization from ether, the spiro isoxazoline $45\left(8.2 \mathrm{~g}, 63 \%\right.$), m.p. $135 \sim 138^{\circ} \mathrm{C}$. UV (ethanol): $244(6,300)$. IR: 3425, 3290, 1670, 1605. NMR: $1.17\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.26\left(\mathrm{t} / \mathrm{J}=7 / \mathrm{CH}_{3}\right), 2.10\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 2.87 / 3.63\left(\mathrm{AB} / \mathrm{J}=18 / \mathrm{CH}_{2}\right), 3.40 / 3.56(\mathrm{AB} / \mathrm{J}=$ $\left.11 / \mathrm{CH}_{2}\right), 3.82\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 3.93 / 5.23(\mathrm{AB} / \mathrm{J}=7.5 / \mathrm{HCOH}), 4.27\left(\mathrm{q} / \mathrm{J}=7 / \mathrm{CH}_{2}\right), 4.52$ (broad/OH), 5.16, $7.10,8.90$ and $9.09(\mathrm{~s} / 2 \times \mathrm{NH}$ and $2 \times \mathrm{OH})$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{10}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Lactone 46

Zinc powder (3.5 g) was added in small portions to a solution of $\mathbf{4 5}(2.0 \mathrm{~g}, 4.8 \mathrm{mmol})$ in 25 ml of acetic acid at $20^{\circ} \mathrm{C}$ over 3.5 hours. After 6 hours, the mixture was filtered, the filtrate was concentrated in vacuo and triturated with ether to give a white powder $(2.2 \mathrm{~g})$. Column chromatography with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(4: 1)$ and crystallization from methanol afforded $46(0.75 \mathrm{~g}, 38 \%)$, m.p. $220^{\circ} \mathrm{C}$ (dec.). IR: 3390, 3255, 1790, 1685. NMR: $1.15\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.80 / 1.85^{*}\left(\mathrm{~s} / \mathrm{CH}_{3} \mathrm{CO}\right), 2.12\left(\mathrm{~m} / \mathrm{CH}_{2}\right), 2.4 \sim 3.9$ $\left(\mathrm{m} / 3 \times \mathrm{CH}_{2}\right), 3.88$ and $5.16 / 5.19^{*}(\mathrm{AB} / \mathrm{J}=7 / \mathrm{HC}-\mathrm{OH}), 4.45(\mathrm{broad} / \mathrm{OH}), 4.82(\mathrm{~m} / \mathrm{CH}-\mathrm{N}), 5.09(\mathrm{~s} / \mathrm{NH})$, $7.03 / 7.27^{*}(\mathrm{~s} / \mathrm{OH}), 8.30 / 8.34^{*}(\mathrm{~d} / \mathrm{J}=8 / \mathrm{NH}), 8.80 / 8.96(\mathrm{~s} / \mathrm{NH}), 9.06(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{10}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Norketone 47

A solution of 48.0 g of bicyclomycin 1 in 2.1 liters of methanol was treated with ozone at $-70^{\circ} \mathrm{C}$ until, after 4 hours, a blue color persisted. Dimethyl sulfide (13 ml) was added and the mixture was allowed to warm up to $5 \sim 10^{\circ} \mathrm{C}$. The white precipitate was collected by filtration and a second crop was obtained on concentration of the filtrate. Recrystallization from methanol-ethyl acetate afforded 47 $(37.3 \mathrm{~g}, 81 \%)$, m.p. $171 \sim 175^{\circ} \mathrm{C}$ (dec.). IR: 3425,3330 and $3270,1705,1670$. NMR: $1.18\left(\mathrm{~s} / \mathrm{CH}_{3}\right)$, $2.80\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, ca. $3.4 \sim 4.1\left(2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 3.99 / 5.38(\mathrm{AB} / \mathrm{J}=7.5 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.60(\mathrm{br} / \mathrm{OH}), 5.30$ (br/OH), $7.04(\mathrm{~s} / \mathrm{OH}), 8.98(\mathrm{br} / \mathrm{NH}), 9.12(\mathrm{br} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot \mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl ester 48

A solution of 18.2 g (54 mmol) of 47 and 20.0 g of carbomethoxymethylene-triphenylphosphorane in 600 ml of dioxane was kept at $70^{\circ} \mathrm{C}$ for 2 hours under a nitrogen atmosphere. The solvent was then removed in vacuo and the residue was chromatographed on 800 g of silica gel using chloroform -

[^5]methanol (4:1) as the eluent to give, after recrystallization from water, $10.6 \mathrm{~g}(54 \%)$ of $\mathbf{4 8}, \mathrm{m} . \mathrm{p} .135 \sim$ $136^{\circ} \mathrm{C}$. IR: 3400, 3280, 1700. NMR: $1.18\left(\mathrm{CH}_{3}\right), 2.4 \sim 3.9\left(\mathrm{~m} / \mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}, 2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 3.62(\mathrm{~s} /$ $\left.\mathrm{CH}_{3} \mathrm{OOC}\right), 3.91 / 5.23(\mathrm{AB} / \mathrm{J}=8 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.48(\mathrm{t} / \mathrm{J}=7 / \mathrm{OH}), 5.12(\mathrm{~s} / \mathrm{OH}), 6.28(\mathrm{~s} / \mathrm{HC}=\mathrm{C}), 7.22,8.77$ and $9.04(\mathrm{~s} / \mathrm{OH}$ and $2 \times \mathrm{NH})$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{9} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds were obtained in a similar way as described above:

Ethyl ester 49

$2.1 \mathrm{~g}(56 \%)$ of 49 resulted from the reaction of $3.04 \mathrm{~g}(10 \mathrm{mmol})$ of 47 with 3.48 g (10 mmoles) of carbethoxymethylene-triphenyl phosphorane in dioxane solution at $70^{\circ} \mathrm{C}$ for 2.5 hours, m.p. $116 \sim$ $120^{\circ} \mathrm{C}$. IR: 3440, 3265, 1720, 1695. NMR: $1.18\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.21\left(\mathrm{t} / \mathrm{J}=7 / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.4 \sim 2.6(\mathrm{~m} /$ $\mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}$ and $\left.2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 3.95 / 5.26(\mathrm{AB} / \mathrm{J}=8 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.11\left(\mathrm{q} / \mathrm{J}=7 / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.50(\mathrm{br} / \mathrm{OH})$ $5.18(\mathrm{br} / \mathrm{OH}), 6.28(\mathrm{~s} / \mathrm{HC}=\mathrm{C}), 7.24(\mathrm{br} / \mathrm{OH}), 8.77(\mathrm{~s} / \mathrm{NH}), 9.04(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{9}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
p-Nitrobenzyl ester $\mathbf{5 0}$
The reaction of $47(3.04 \mathrm{~g}, 10 \mathrm{mmol})$ and $p-\mathrm{NO}_{2}$-benzyloxycarbonyl-methylene-triphenyl phosphorane ($4.55 \mathrm{~g}, 10 \mathrm{mmol}$) gave $1.2 \mathrm{~g}(25 \%)$ of $\mathbf{5 0}$, m.p. $165 \sim 169^{\circ} \mathrm{C}$. IR: $3380,1730,1710,1690,1605$. NMR: $1.18\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.4 \sim 3.9\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$ and $\left.2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 3.92 / 5.18(\mathrm{AB} / \mathrm{J}=8 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.50$ (br/OH), $5.20(\mathrm{br} / \mathrm{OH}), 5.27\left(\mathrm{~s} / \mathrm{CH}_{2}\right), 6.38(\mathrm{~s} / \mathrm{HC}=\mathrm{C}), 7.29(\mathrm{~s} / \mathrm{OH}), 7.63 / 8.22\left(\mathrm{~A}_{2} \mathrm{~B}_{2} / \mathrm{J}=9 / \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.80$ (s/NH), 9.08. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{11} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Carboxylic acid 51

A solution of $50(2.4 \mathrm{~g}, 5.0 \mathrm{mmol})$ in 100 ml of ethanol was hydrogenated over $0.12 \mathrm{~g} \mathrm{Pd} / \mathrm{C}$. The hydrogen uptake ceased after 24 hours ($473 \mathrm{ml}, 106 \%$ of calc. volume). Filtration and evaporation of the solvent gave an oily residue which was chromatographed on silica gel (40 g). After separation of non-polar byproducts with chloroform - methanol ($9: 1$), 51 was eluated with chloroform - methanol (4: 1) and obtained as an amorphous solid ($1.50 \mathrm{~g}, 86 \%$) from methanol-ethyl acetate. IR: 3380, 3280, 1695. NMR: $1.18\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.4 \sim 3.9\left(\mathrm{~m} / \mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.34 / 3.47\left(\mathrm{AB} / \mathrm{J}=11 / \mathrm{CH}_{2} \mathrm{O}\right)$, $3.95(\mathrm{~s} / \mathrm{H}-\mathrm{C}-\mathrm{O}), 5.3(\mathrm{br} / \mathrm{COOH}$ and OH$), 6.27(\mathrm{~s} / \mathrm{HC}=\mathrm{C}), 8.77(\mathrm{~s} / \mathrm{NH}), 9.04(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{9}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Nitrile 52

The reaction of $47(1.82 \mathrm{~g}, 6 \mathrm{mmol})$ with cyanomethylene triphenylphosphorane ($1.80 \mathrm{~g}, 6 \mathrm{mmol}$) yielded $52\left(0.86 \mathrm{~g}, 44 \%\right.$), m.p. $\sim 180^{\circ} \mathrm{C}$ (dec.). IR: $3350,3250,2225,1730,1705,1625$. NMR: 1.14 $\left(\mathrm{s} / \mathrm{CH}_{3}\right), 2.24 \sim 3.05\left(\mathrm{~m} / \mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}\right), 3.1 \sim 4.1\left(\mathrm{~m} / 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.90 / 5.24(\mathrm{AB} / \mathrm{J}=8 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.52(\mathrm{br} /$ $\mathrm{OH}), 5.25(\mathrm{br} / \mathrm{OH}), 5.91(\mathrm{~s} / \mathrm{HC}=\mathrm{C}), 7.48(\mathrm{br} / \mathrm{OH}), 8.90(\mathrm{br} / \mathrm{NH}), 9.10(\mathrm{br} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7}\right)$ C,H,N.

Acetylmethylene tri- n-butylphosphorane
A mixture of $34.6 \mathrm{ml}(0.43 \mathrm{~mol})$ of chloroacetone and $60 \mathrm{ml}(0.43 \mathrm{~mol})$ of tri- n-butyl phosphine in 1.0 liter of benzene was refluxed for 20 hours. After cooling the benzene layer was removed and the remaining viscous solid was crystallized by trituration with petroleum ether to give the hygroscopic 2-oxo-propyl-tri-n-butyl phosphonium chloride. Treatment of this salt with 200 ml of 2 N aqueous NaOH and 30 ml of methanol at $5^{\circ} \mathrm{C}$ followed by extraction with ethyl acetate and removal of the solvent afforded acetylmethylene tri-n-butylphosphorane as a hygroscopic resin which was used without further purification ($61.0 \mathrm{~g}, 55 \%$).

Methyl ketone 53

A mixture of $9.06 \mathrm{~g}(27 \mathrm{mmol})$ of 47 and $11.6 \mathrm{~g}(45 \mathrm{mmol})$ of acetylmethylene tri- n-butylphosphorane in 300 ml of dioxane was stirred at $50^{\circ} \mathrm{C}$ for 5 hours. Evaporation, chromatography of the residue on silica gel with ethyl acetate - ethanol (4:1), trituration of the concentrated fractions with cold ethyl acetate and collection by filtration gave $53\left(2.17 \mathrm{~g}, 23 \%\right.$), m.p. $111 \sim 119^{\circ} \mathrm{C}$ (dec.). Rf 0.54 (chloroform - methanol, $4: 1$). UV (water): $230(8,800)$. IR: $3420,3260,1695,1625$. NMR: $1.16\left(\mathrm{~s} / \mathrm{CH}_{3}\right)$, $2.20\left(\mathrm{~s} / \mathrm{CH}_{3} \mathrm{CO}\right), 2.3 \sim 4.2\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$ and $\left.2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 3.95 / 5.28(\mathrm{AB} / \mathrm{J}=8 / \mathrm{HC}-\mathrm{OH}), 4.52(\mathrm{t} / \mathrm{J}=$ $7 / \mathrm{OH}), 5.18(\mathrm{~s} / \mathrm{OH}), 6.72(\mathrm{~s} / \mathrm{HC}=\mathrm{C}), 7.22(\mathrm{~s} / \mathrm{OH}), 8.78(\mathrm{~s} / \mathrm{NH}), 9.06(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{8}\right.$. $\left.\frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Pentol 54

$0.24 \mathrm{~g}(6.4 \mathrm{mmol})$ of NaBH_{4} was added in small portions over a period of 15 minutes to a solution of $2.2 \mathrm{~g}(6.2 \mathrm{mmol})$ of $\mathbf{5 3}$ in 50 ml of methanol at $5^{\circ} \mathrm{C}$. Concentration in vacuo, chromatography on silica gel with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(1: 1)$ and crystallization from methanol - ethyl acetate gave 1.12 g (52%) of 54 as mixture of 2 epimers, m.p. $175 \sim 182^{\circ} \mathrm{C}$. IR: 3280, 1690. NMR (DMSO/D $\mathrm{D}_{2} \mathrm{O}$): $1.20\left(\mathrm{~s} / \mathrm{CH}_{3}\right), \quad 1.28 / 1.34\left(\mathrm{~d} / \mathrm{J}=7 / \mathrm{CH}_{3}\right), \quad 1.7 \sim 3.9\left(\mathrm{~m} / 3 \times \mathrm{CH}_{2}, 2 \times \mathrm{CH}\right), 4.92(\mathrm{~d} / \mathrm{J}=8 / \mathrm{HC}=\mathrm{C})$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Phenacyl-tri- n-butyl phosphonium chloride

Phenacyl-tri-n-butyl-phosphonium chloride ($56.3 \mathrm{~g}, 82.6 \%$) resulted from the reaction of 30.92 g $(0.2 \mathrm{Mol})$ of phenacyl chloride and $50.6 \mathrm{ml}(0.2 \mathrm{Mol})$ of tri- n-butyl phosphine in 400 ml of ether under reflux for 21 hours. After evaporation the salt was obtained by crystallization from pentane and ether as a very hygroscopic white powder, which was used without further purification.

Phenyl ketone 55

A mixture of $2.5 \mathrm{~g}(8.21 \mathrm{mmol})$ of $47,2.8 \mathrm{~g}(8.21 \mathrm{mmol})$ of phenacyl-tri- n-butyl-phosphonium chloride and $0.95 \mathrm{~g}(8.21 \mathrm{mmol})$ of $\mathrm{KOtBu}(97 \%)$ in 30 ml of dioxane was stirred at room temperature for 24 hours, filtered and evaporated. The oily residue was twice chromatographed over 400 and 100 g of silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(5: 1)$ and ethyl acetate $-\mathrm{MeOH}(4: 1)$, followed by evaporation to dryness and precipitation from EtOH-pentane to give $0.73 \mathrm{~g}(22 \%)$ of 55 as a hygroscopic, amorphous powder, melting at $136 \sim 146^{\circ} \mathrm{C}$. Rf $0.5\left(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}-\mathrm{MeOH}, 4: 1\right)$. UV (EtOH): 262 (13,500). IR: $3280(\mathrm{sh}), 1690$. NMR: $1.13\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.90 \sim 3.86\left(\mathrm{~m} / \mathrm{CH}_{2}-\mathrm{C}=\mathrm{CH} / 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.92 / 5.28$ $(\mathrm{AB} / \mathrm{J}=8 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.48\left(\mathrm{~m} / \mathrm{CH}_{2}-\mathrm{OH}\right), 5.15(\mathrm{broad} / \mathrm{OH}), 7.27(\mathrm{~s} / \mathrm{HC}=\mathrm{C}), 7.33(\mathrm{broad} / \mathrm{OH}), 7.41 \sim$ $7.72\left(\mathrm{~m} / 3 \mathrm{H} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right), 7.75 \sim 8.00\left(\mathrm{~m} / 2 \mathrm{H} / \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}\right), 8.87(\mathrm{~s} / \mathrm{NH}), 9.09$ (broad/NH). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{22^{-}}\right.$ $\left.\mathrm{N}_{2} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}, \mathrm{H}_{2} \mathrm{O}(3.27 \%)$.

Hemiketal 56

To 50 ml of dioxane were added $53(1.3 \mathrm{~g}, 3.67 \mathrm{mmol}), \mathrm{NaCNBH}_{3}(0.37 \mathrm{~g}, 5.9 \mathrm{mmol})$ and $\mathrm{CH}_{3}-$ $\mathrm{NH}_{2} \cdot \mathrm{HCl}(0.40 \mathrm{~g}, 5.9 \mathrm{mmol})$. The resulting mixture was allowed to react at $20^{\circ} \mathrm{C}$ for 18 hours. Filtration, concentration of the filtrate in vacuo and chromatography of the residual oil with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3}$ $\mathrm{OH}(2: 1)$ afforded 58 as a white, hygroscopic powder $(0.25 \mathrm{~g}, 19 \%)$, m.p. $111 \sim 119^{\circ} \mathrm{C}$. IR: 3390, 3280, 1695. NMR: $1.14\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 1.44\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.4 \sim 4.2\left(\mathrm{~m} / 3 \times \mathrm{CH}_{2}\right), 3.88 / 5.25(\mathrm{AB} / \mathrm{J}=8 / \mathrm{HC}-\mathrm{OH})$, $4.46(\mathrm{broad} / \mathrm{OH}), 5.19(\mathrm{~s} / \mathrm{OH}), 5.72(\mathrm{~s} / \mathrm{OH}), 5.78(\mathrm{~s} / \mathrm{HC}=\mathrm{C}), 8.23(\mathrm{~s} / \mathrm{NH}), 8.96(\mathrm{~s} / \mathrm{NH})$. Anal $\left(\mathrm{C}_{14} \mathrm{H}_{20}-\right.$ $\left.\mathrm{N}_{2} \mathrm{O}_{8} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Oxime 57

To a solution of $47(2.43 \mathrm{~g}, 8.0 \mathrm{mmol})$ in 160 ml of ethanol were added $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(0.56 \mathrm{~g}, 8.0$ mmol) and pyridine $(0.65 \mathrm{ml})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 hour and then concentrated by rotatory evaporation. Crystallization of the residual oil from methanol-ethyl acetate gave 0.58 g of 59. A second crop was obtained after chromatography of the mother liquid with chloroform - methanol (1:1). Recrystallization of the combined crops gave 59 ($1.84 \mathrm{~g}, 72 \%$), m.p. $185 \sim 188^{\circ} \mathrm{C}$ (dec.). IR: 3500, 3330, 3240, 1705. NMR: $1.17\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.1 \sim 2.5\left(\mathrm{~m} / \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right), 3.0 \sim 3.9\left(\mathrm{~m} / 2 \times \mathrm{CH}_{2} \mathrm{O}\right)$, $3.90 / 5.23(\mathrm{AB} / \mathrm{J}=7.5 / \mathrm{H}-\mathrm{C}-\mathrm{OH}), 4.47(\mathrm{broad} / \mathrm{OH}), 5.17(\mathrm{~s} / \mathrm{OH}), 6.17(\mathrm{~s} / \mathrm{OH}), 8.82(\mathrm{~s} / \mathrm{NH}), 9.00(\mathrm{~s} /$ $\mathrm{NH}), 11.47(\mathrm{~s} / \mathrm{HO}-\mathrm{N}=)$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

O-Methyl oxime 58

60 was prepared from $47(1.21 \mathrm{~g})$ and $\mathrm{CH}_{3} \mathrm{ONH}_{2} \cdot \mathrm{HCl}(0.34 \mathrm{~g})$ by essentially the same procedure as described above for the oxime 59. m.p. $145 \sim 148^{\circ} \mathrm{C}$. IR: 3480, 3260, 1705, 1630. NMR: 1.18 $\left(\mathrm{s} / \mathrm{CH}_{3}\right), 2.2 \sim 4.1\left(\mathrm{~m} / 3 \times \mathrm{CH}_{2}\right), 3.86\left(\mathrm{~s} / \mathrm{CH}_{3} \mathrm{O}\right), 3.95 / 5.33(\mathrm{AB} / \mathrm{J}=8 / \mathrm{HCOH}), 4.54(\mathrm{t} / \mathrm{J}=6 / \mathrm{OH}), 5.22$ $(\mathrm{s} / \mathrm{OH}), 6.52(\mathrm{~s} / \mathrm{OH}), 8.93(\mathrm{~s} / \mathrm{NH}), 9.12(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Phenylhydrazone 59

A mixture containing $47(2.43 \mathrm{~g}, 8.0 \mathrm{mmol})$, phenylhydrazine hydrochloride $(1.16 \mathrm{~g}, 8.0 \mathrm{mmol})$ and pyridine $(0.65 \mathrm{ml})$ in 160 ml of ethanol was stirred at $20^{\circ} \mathrm{C}$ overnight. After evaporation of the solvent the residue was purified by chromatography and crystallization from acetone - ether to give
$59\left(2.19 \mathrm{~g}, 68 \%\right.$), m.p. $165^{\circ} \mathrm{C}$ (dec.). UV (ethanol): $282(16,300), 302(13,300)$. IR (nujol): 3450,3555 , 1705, 1615, 1505. NMR: $1.18\left(\mathrm{~s} / \mathrm{CH}_{3}\right), 2.2 \sim 4.1\left(\mathrm{~m} / 3 \times \mathrm{CH}_{2}\right), 3.96 / 5.26(\mathrm{AB} / \mathrm{J}=8 / \mathrm{HCOH}), 4.50$ (broad $/ \mathrm{OH}$), $5.18(\mathrm{~s} / \mathrm{OH}), 6.23(\mathrm{~s} / \mathrm{OH}), 6.6 \sim 7.3\left(\mathrm{~m} / \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.80(\mathrm{~s} / \mathrm{NH}), 8.98(\mathrm{~s} / \mathrm{NH}), 9.42(\mathrm{~s} / \mathrm{NH})$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Acknowledgements

The authors are indebted to Drs. H. Fuhrer, G. Rist and T. Winkler for the interpretation of the NMR spectra which proved essential for the progress of our work. We also wish to thank Dr. R. Scartazzini for his support and his valuable suggestions, Dr. H. Bickel for his interest and Prof. A. Eschenmoser, ETH Zürich for stimulating discussions.

References

1) Miyoshi, T.; N. Miyairi, H. Aoki, M. Kohsaka, H. Sakai \& H. Imanaka: Bicyclomycin, a new antibiotic. I. Taxonomy, isolation and characterization. J. Antibiotics 25: 569~575, 1972
2) Kamiya, T.; S. Maeno, M. Hashimoto \& Y. Mine: Bicyclomycin, a new antibiotic. II. Structural elucidation and acyl derivatives. J. Antibiotics 25: 576~581, 1972
3) Tokuma, Y.; S. Koda, T. Miyoshi \& Y. Morimoto: The crystal and molecular structure of bicyclomycin, a new antibiotic. Bull. Chem. Soc. Japan 47: 18~23, 1974
4) Nishida, M.; Y. Mine, T. Matsubara, S. Goto \& S. Kuwahara: Bicyclomycin, a new antibiotic. III. In vitro and in vivo antimicrobial activity. J. Antibiotics 25: 582~593, 1972
5) Tanaka, N.; M. Iseki, T. Miyoshi, H. Aoki \& H. Imanaka: Mechanism of action of bicyclomycin. J. Antibiotics 29: 155~168, 1976
6) Fujisawa Pharmaceutical Co. Ltd.: Neues Antibioticum WS-4545 und dessen Derivate. Germany, Offenlegungsschrift 2,150,593.
7) Kamiya, T.; S. Maeno \& Y. Kitaura: Belgium Patent 847,475
8) Skinner, G. S.: Evidence of the existence of aliphatic diazonium salts from the formation of chlorooximino compounds. J. Am. Chem. Soc. 46: 731~740, 1924
9) Hawkes, G. E.; K. Herwig \& J. D. Roberts: Nuclear magnetic resonance spectroscopy. Use of ${ }^{13} \mathrm{C}$ spectra to establish configuration of oximes. J. Org. Chem. 39: 1017~1028, 1974
10) Ericsson, H. M. \& J. C. Sherris: Antibiotic sensitivity testing. Acta Pathol. Microbiol. Scand. No. 217, 79B: 1~90, 1971
11) Steers, E.; E. L. Folz \& B. S. Garves: An inocula replicating apparatus for routine testing of bacterial susceptibility to antibiotics. Antibiot. \& Chemoth. 9: 307~311, 1959
12) Litchfield, J. T. \& F. Wilcoxon: A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Therap. 96: 99~113, 1949
13) Mahg, H.; J. F. Blount, D. L. Coffen, T. V. Steppe \& F. Wong: Structure, absolute configuration, and total synthesis of an acid-catalyzed rearrangement product of bicyclomycin. J. Am. Chem. Soc. 100: 6786~6788, 1978

[^0]: * The absolute configuration has just recently been determined by MAAG et al. ${ }^{13)}$
 ** Acetylation of unprotected bicyclomycin yields triacetate $7^{2,6}$).
 *** $\mathbf{1 6}$ is also accessible via 3^{\prime}-O-tosyl-bicyclomycin ${ }^{7}$.

[^1]: * Attempts to convert 40 into 5-aminomethyl or 5-thiomethyl derivatives failed owing to the limited stability of 40 .

[^2]: * We are indebted to Dr. T. Kamiya for this procedure.

[^3]: * double signals of the 2 diastereomers.

[^4]: * For further data see also preparation of 35 from 34 .

[^5]: * double signals,! ndicating the presence of 2 epimers.

